論文の概要: A Bias-Free Training Paradigm for More General AI-generated Image Detection
- arxiv url: http://arxiv.org/abs/2412.17671v1
- Date: Mon, 23 Dec 2024 15:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:57:47.321901
- Title: A Bias-Free Training Paradigm for More General AI-generated Image Detection
- Title(参考訳): より汎用的なAI画像検出のためのバイアスフリートレーニングパラダイム
- Authors: Fabrizio Guillaro, Giada Zingarini, Ben Usman, Avneesh Sud, Davide Cozzolino, Luisa Verdoliva,
- Abstract要約: 良く設計された法医学的検知器は、データバイアスを反映するのではなく、生成物固有のアーティファクトを検出する必要がある。
本稿では,実画像から偽画像を生成する,バイアスのない学習パラダイムであるB-Freeを提案する。
我々は,最先端検出器の一般化とロバスト性の両方において有意な改善が認められた。
- 参考スコア(独自算出の注目度): 15.421102443599773
- License:
- Abstract: Successful forensic detectors can produce excellent results in supervised learning benchmarks but struggle to transfer to real-world applications. We believe this limitation is largely due to inadequate training data quality. While most research focuses on developing new algorithms, less attention is given to training data selection, despite evidence that performance can be strongly impacted by spurious correlations such as content, format, or resolution. A well-designed forensic detector should detect generator specific artifacts rather than reflect data biases. To this end, we propose B-Free, a bias-free training paradigm, where fake images are generated from real ones using the conditioning procedure of stable diffusion models. This ensures semantic alignment between real and fake images, allowing any differences to stem solely from the subtle artifacts introduced by AI generation. Through content-based augmentation, we show significant improvements in both generalization and robustness over state-of-the-art detectors and more calibrated results across 27 different generative models, including recent releases, like FLUX and Stable Diffusion 3.5. Our findings emphasize the importance of a careful dataset curation, highlighting the need for further research in dataset design. Code and data will be publicly available at https://grip-unina.github.io/B-Free/
- Abstract(参考訳): 成功した法医学的検出器は、教師付き学習ベンチマークにおいて優れた結果をもたらすことができるが、現実のアプリケーションへの移行に苦慮している。
この制限は、トレーニングデータの品質が不十分なため、と私たちは考えています。
ほとんどの研究は、新しいアルゴリズムの開発に焦点を当てているが、コンテンツ、フォーマット、解像度などの急激な相関によって、パフォーマンスが強く影響される証拠にもかかわらず、データ選択のトレーニングにはあまり注意を払わない。
良く設計された法医学的検知器は、データバイアスを反映するのではなく、ジェネレータ固有のアーティファクトを検出する必要がある。
そこで本研究では,安定拡散モデルの条件付け手法を用いて,実画像から偽画像を生成する,バイアスのない学習パラダイムであるB-Freeを提案する。
これにより、リアルイメージとフェイクイメージのセマンティックアライメントが保証され、AI生成によって導入された微妙なアーティファクトのみに違いが生じる。
コンテントベースの拡張を通じて、最先端検出器に対する一般化と堅牢性の両方において、FLUXやStable Diffusion 3.5といった27種類の生成モデルに対して、よりキャリブレーションされた結果が得られた。
本研究は,詳細なデータセットキュレーションの重要性を強調し,データセット設計におけるさらなる研究の必要性を強調した。
コードとデータはhttps://grip-unina.github.io/B-Free/で公開される。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Data-Independent Operator: A Training-Free Artifact Representation
Extractor for Generalizable Deepfake Detection [105.9932053078449]
本研究では,より一般的な人工物表現を捉えるのに,小型かつトレーニング不要なフィルタが十分であることを示す。
トレーニングソースとテストソースの両方に不偏があるため、未確認ソースに対して魅力的な改善を実現するために、Data-Independent Operator (DIO)と定義する。
我々の検出器は13.3%の大幅な改善を実現し、新しい最先端の性能を確立した。
論文 参考訳(メタデータ) (2024-03-11T15:22:28Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - DiffAug: Enhance Unsupervised Contrastive Learning with Domain-Knowledge-Free Diffusion-based Data Augmentation [48.25619775814776]
本稿では,拡散モードに基づく正データ生成を用いた新しい教師なしコントラスト学習手法であるDiffAugを提案する。
DiffAugはセマンティックエンコーダと条件拡散モデルから構成されており、条件拡散モデルはセマンティックエンコーダに条件付された新しい正のサンプルを生成する。
実験的評価により、DiffAugは、DNA配列、視覚、および生体機能データセットのハンドデザインおよびSOTAモデルに基づく拡張手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-10T13:28:46Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。