論文の概要: RUL forecasting for wind turbine predictive maintenance based on deep learning
- arxiv url: http://arxiv.org/abs/2412.17823v1
- Date: Mon, 09 Dec 2024 13:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-29 08:29:31.320679
- Title: RUL forecasting for wind turbine predictive maintenance based on deep learning
- Title(参考訳): 深層学習に基づく風力タービンの予測保守のためのRUL予測
- Authors: Syed Shazaib Shah, Tan Daoliang, Sah Chandan Kumar,
- Abstract要約: 本研究では,将来的なRUL予測のための新しいディープラーニング(DL)手法を提案する。
ForeNet-2dとForeNet-3dの2つのモデルが提案されている。
最も正確な予測は実際のRULからわずか10分しかずれず、最も正確な予測は1.8日ずれていた。
- 参考スコア(独自算出の注目度): 1.798594109079455
- License:
- Abstract: Predictive maintenance (PdM) is increasingly pursued to reduce wind farm operation and maintenance costs by accurately predicting the remaining useful life (RUL) and strategically scheduling maintenance. However, the remoteness of wind farms often renders current methodologies ineffective, as they fail to provide a sufficiently reliable advance time window for maintenance planning, limiting PdM's practicality. This study introduces a novel deep learning (DL) methodology for future RUL forecasting. By employing a multi-parametric attention-based DL approach that bypasses feature engineering, thereby minimizing the risk of human error, two models: ForeNet-2d and ForeNet-3d are proposed. These models successfully forecast the RUL for seven multifaceted wind turbine (WT) failures with a 2-week forecast window. The most precise forecast deviated by only 10 minutes from the actual RUL, while the least accurate prediction deviated by 1.8 days, with most predictions being off by only a few hours. This methodology offers a substantial time frame to access remote WTs and perform necessary maintenance, thereby enabling the practical implementation of PdM.
- Abstract(参考訳): 予測維持(PdM)は、残余の有効寿命(RUL)を正確に予測し、戦略的にメンテナンスをスケジューリングすることで、風力発電の運用とメンテナンスコストを削減するためにますます追求されている。
しかしながら、風力発電所の遠隔性は、保守計画に十分な信頼性のある事前時間窓を提供することができず、PdMの実用性に制限を与えるため、現在の方法論を効果的にしないことが多い。
本研究では,将来的なRUL予測のための新しいディープラーニング(DL)手法を提案する。
ForeNet-2d と ForeNet-3d の2つのモデルが提案されている。
これらのモデルは、2週間の予測ウィンドウを持つ7つの多面風力タービン(WT)故障に対してRULを予測することに成功した。
最も正確な予測は実際のRULから10分しかずれていないが、最も正確な予測は1.8日ずれており、ほとんどの予測は数時間ずれている。
この方法論は、リモートWTにアクセスし、必要なメンテナンスを行うためのかなりの時間枠を提供するので、PdMの実践的な実装を可能にする。
関連論文リスト
- Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - Mesoscale Traffic Forecasting for Real-Time Bottleneck and Shockwave
Prediction [9.606555361712116]
空間次元に自己注意(SA)とLong Short-Term Memory(LSTM)を統合する深層予測法であるSA-LSTMを導入する。
この手法を,n段階のSA-LSTMを用いた多段階予測に拡張し,短期予測と長期予測のトレードオフにおいて従来の多段階予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:27:10Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
本稿では,標準変圧器バックボーンの変更を最小限に抑えつつ,気象予報の最先端性能であるStormerを紹介する。
Stormerの中核はランダムな予測目標であり、様々な時間間隔で天気のダイナミクスを予測するためにモデルを訓練する。
ウェザーベンチ2では、ストーマーは短距離から中距離の予測で競争力を発揮し、現在の手法を7日を超えて上回っている。
論文 参考訳(メタデータ) (2023-12-06T19:46:06Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
我々は機械学習と時系列予測の最近の進歩を生かしたオートコーダアプローチを開発した。
S曲線予測は、単純なARIMAベースラインに匹敵する平均パーセンテージ誤差(MAPE)を示す。
我々のオートエンコーダアプローチは、2番目に高い結果に対して平均13.5%改善する。
論文 参考訳(メタデータ) (2022-11-28T14:16:22Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
本稿では,各家電の消費電力を効率よく予測するSTLFアルゴリズムを提案する。
提案手法は、ディープラーニングにおける強力なリカレントニューラルネットワーク(RNN)アーキテクチャに基づいている。
論文 参考訳(メタデータ) (2021-11-23T16:56:37Z) - Multi-Airport Delay Prediction with Transformers [0.0]
TFT(Temporal Fusion Transformer)は、複数の空港での出発と到着の遅れを同時に予測するために提案された。
このアプローチは、予測時に既知の入力の複雑な時間的ダイナミクスをキャプチャし、選択された遅延メトリクスを4時間先まで予測することができる。
論文 参考訳(メタデータ) (2021-11-04T21:58:11Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting
Using Deep Learning [1.52292571922932]
太陽エネルギーの非定常特性のため、短期的な太陽照度予測は困難である。
日内太陽光のマルチスケール予測のための統一アーキテクチャを提案する。
提案手法は,全試験場の平均RMSEを71.5%削減する。
論文 参考訳(メタデータ) (2019-05-07T14:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。