論文の概要: Towards Cognitive Service Delivery on B5G through AIaaS Architecture
- arxiv url: http://arxiv.org/abs/2412.17967v1
- Date: Mon, 23 Dec 2024 20:30:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:26.566494
- Title: Towards Cognitive Service Delivery on B5G through AIaaS Architecture
- Title(参考訳): AIaaSアーキテクチャによるB5G上の認知サービス提供に向けて
- Authors: Larissa F. Rodrigues Moreira, Rodrigo Moreira, Flávio de Oliveira Silva, André R. Backes,
- Abstract要約: 4Gから5Gへの移行は、ビジネス分野に向けたネットワークの統合において、AIに重大な意味を持つ。
本稿では,AI能力B5Gと6Gでコアネットワークをさらに強化するために必要なインターフェースを提示するNWDAFの進化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.16070833439280313
- License:
- Abstract: Artificial Intelligence (AI) is pivotal in advancing mobile network systems by facilitating smart capabilities and automation. The transition from 4G to 5G has substantial implications for AI in consolidating a network predominantly geared towards business verticals. In this context, 3GPP has specified and introduced the Network Data Analytics Function (NWDAF) entity at the network's core to provide insights based on AI algorithms to benefit network orchestration. This paper proposes a framework for evolving NWDAF that presents the interfaces necessary to further empower the core network with AI capabilities B5G and 6G. In addition, we identify a set of research directions for realizing a distributed e-NWDAF.
- Abstract(参考訳): 人工知能(AI)は、スマート機能と自動化を促進することによって、モバイルネットワークシステムの発展において重要な存在である。
4Gから5Gへの移行は、主にビジネス分野に向けられたネットワークの統合において、AIに重大な意味を持つ。
このコンテキストにおいて、3GPPはネットワークのコアにNetwork Data Analytics Function (NWDAF)エンティティを定義し、導入し、ネットワークオーケストレーションの恩恵を受けるためにAIアルゴリズムに基づいた洞察を提供する。
本稿では,AI能力B5Gと6Gでコアネットワークをさらに強化するために必要なインターフェースを提示するNWDAFの進化フレームワークを提案する。
さらに,分散e-NWDAFを実現するための一連の研究方向を同定する。
関連論文リスト
- Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
本稿では,6GネットワークにおけるAIと通信の概要を概観する。
我々はまず、AIを無線通信に組み込むことの背景にある要因と、AIと6Gの収束のビジョンを概観する。
講演はその後、6Gネットワーク内でAIの統合を想定する詳細な説明へと移行する。
論文 参考訳(メタデータ) (2024-12-19T05:36:34Z) - Towards Intent-Based Network Management: Large Language Models for Intent Extraction in 5G Core Networks [10.981422497762837]
機械学習と人工知能を第5世代(5G)ネットワークに統合することで、ネットワークインテリジェンスの限界が明らかになった。
本稿では,5Gおよび次世代インテントベースネットワークのためのLLM(Large Language Model)の開発について述べる。
論文 参考訳(メタデータ) (2024-03-04T17:29:57Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situモデルダウンロードは、ネットワーク内のAIライブラリからダウンロードすることで、デバイス上のAIモデルを透過的でリアルタイムに置き換えることを目的としている。
提示されたフレームワークの重要なコンポーネントは、ダウンロードされたモデルを深さレベル、パラメータレベル、ビットレベルで動的に圧縮する一連のテクニックである。
我々は,3層(エッジ,ローカル,中央)AIライブラリのキー機能を備えた,インサイトモデルダウンロードのデプロイ用にカスタマイズされた6Gネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T13:41:15Z) - Near Real-Time Distributed State Estimation via AI/ML-Empowered 5G
Networks [1.1938918581443054]
エネルギー管理システムの重要な要素として状態推定関数に着目した。
i)グラフィカルモデルと信念伝播,およびi)グラフニューラルネットワークに基づく2つの強力な分散SE手法を比較した。
論文 参考訳(メタデータ) (2022-07-22T14:48:10Z) - Towards Supporting Intelligence in 5G/6G Core Networks: NWDAF
Implementation and Initial Analysis [3.5573601621032935]
本稿では,NWDAFをオープンソースソフトウェアを用いて開発した5Gネットワークに組み込む。
5Gネットワークの期待される限界は,6Gネットワーク開発へのモチベーションとして議論される。
論文 参考訳(メタデータ) (2022-05-30T14:15:46Z) - Introduction to the Artificial Intelligence that can be applied to the
Network Automation Journey [68.8204255655161]
Intent-Based Networking - Concepts and Definitions"ドキュメントには、NetDevOpsに関わる可能性のあるエコシステムのさまざまな部分について記述されている。
認識、生成、翻訳、精巧な機能には、アルゴリズムを実装するための新しい方法が必要だ。
論文 参考訳(メタデータ) (2022-04-02T08:12:08Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
私たちは5G/B5Gインテリジェントネットワーク(TTIN)のための世界初の真のデータテストベッドを構築します
TTINは5G/B5Gオンサイト実験ネットワーク、データ取得とデータウェアハウス、AIエンジンとネットワーク最適化で構成されている。
本稿では,TTINのシステムアーキテクチャとモジュール設計について詳述する。
論文 参考訳(メタデータ) (2020-11-26T06:42:36Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。