論文の概要: ICPR 2024 Competition on Domain Adaptation and GEneralization for Character Classification (DAGECC)
- arxiv url: http://arxiv.org/abs/2412.17984v1
- Date: Mon, 23 Dec 2024 21:06:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:27.693397
- Title: ICPR 2024 Competition on Domain Adaptation and GEneralization for Character Classification (DAGECC)
- Title(参考訳): ICPR 2024 文字分類のためのドメイン適応とゲネラライゼーションに関するコンペティション(DAGECC)
- Authors: Sofia Marino, Jennifer Vandoni, Emanuel Aldea, Ichraq Lemghari, Sylvie Le Hégarat-Mascle, Frédéric Jurie,
- Abstract要約: 提案した課題の一般的な文脈をコミュニティに提示し、コンペに備えたデータを紹介し、結果の概要と、上位3つの勝者の項目について説明する。
このコンペティションはドメイン適応と一般化を中心に行われており、新しいアイデアの高速なプロトタイピングと検証を支援する高品質で軽量な実世界のデータセットを提供することで、関心を高め、これらのトピックの進展を促進することを目的としています。
- 参考スコア(独自算出の注目度): 3.1353272648618358
- License:
- Abstract: In this companion paper for the DAGECC (Domain Adaptation and GEneralization for Character Classification) competition organized within the frame of the ICPR 2024 conference, we present the general context of the tasks we proposed to the community, we introduce the data that were prepared for the competition and we provide a summary of the results along with a description of the top three winning entries. The competition was centered around domain adaptation and generalization, and our core aim is to foster interest and facilitate advancement on these topics by providing a high-quality, lightweight, real world dataset able to support fast prototyping and validation of novel ideas.
- Abstract(参考訳): 本論文は,ICPR 2024 カンファレンスの枠内で組織された DAGECC (Domain Adaptation and GEneralization for Character Classification) コンペティションのコンペティションのコンペティションについて,コミュニティに提案したタスクの一般的な状況,コンペティションに備えたデータを紹介するとともに,上位3つのエントリーの説明とともに結果の概要を紹介する。
このコンペティションはドメイン適応と一般化を中心に行われており、新しいアイデアの高速なプロトタイピングと検証を支援する高品質で軽量な実世界のデータセットを提供することで、関心を高め、これらのトピックの進展を促進することを目的としています。
関連論文リスト
- Auto-survey Challenge [0.0]
本稿では,大規模言語モデル(LLM)を自律的に作成・批判する能力を評価するための新しいプラットフォームを提案する。
このフレームワークの中で、AutoMLカンファレンス2023のコンペを開催しました。
入場者は、指定したプロンプトから記事の執筆に適したスタンドアローンモデルを提示し、その後評価する。
論文 参考訳(メタデータ) (2023-10-06T09:12:35Z) - The Robust Semantic Segmentation UNCV2023 Challenge Results [99.97867942388486]
本稿では,ICCV 2023で実施されたMUAD不確実性定量化問題に対処するために用いられる勝利解について概説する。
この課題は、都市環境におけるセマンティックセグメンテーションを中心に、特に自然の敵対的なシナリオに焦点を当てた。
本報告では, 最先端の不確実性定量化手法からインスピレーションを得た19件の論文を提示する。
論文 参考訳(メタデータ) (2023-09-27T08:20:03Z) - EFaR 2023: Efficient Face Recognition Competition [51.77649060180531]
バイオメトリックス国際会議(IJCB 2023)における効率的な顔認識コンペティション(EFaR)の概要について述べる。
この競技会は6つの異なるチームから17の応募を受けた。
提案したソリューションは、様々なベンチマークで達成された検証精度の重み付けスコアと、浮動小数点演算数とモデルサイズによって与えられるデプロイ可能性に基づいてランク付けされる。
論文 参考訳(メタデータ) (2023-08-08T09:58:22Z) - ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich
Document Images [198.35937007558078]
大会は2022年12月30日に開かれ、2023年3月24日に閉幕した。
トラック1には35人の参加者と91人の有効な応募があり、トラック2には15人の参加者と26人の応募がある。
提案手法の性能によると, 複雑なシナリオやゼロショットシナリオにおいて, 期待される情報抽出性能にはまだ大きなギャップがあると考えられる。
論文 参考訳(メタデータ) (2023-06-05T22:20:52Z) - ICDAR 2023 Competition on Robust Layout Segmentation in Corporate
Documents [3.6700088931938835]
ICDARは、最先端の技術をベンチマークするコンペを主催する長い伝統がある。
以前のコンペティションよりもバーを上げるために、ハードコンペティションデータセットを設計し、トレーニング用の最近のDocLayNetデータセットを提案しました。
我々は,最近のコンピュータビジョンモデル,データ拡張戦略,アンサンブル手法の興味深い組み合わせを認識し,提案したタスクにおいて顕著な精度を実現する。
論文 参考訳(メタデータ) (2023-05-24T09:56:47Z) - ICDAR 2023 Competition on Hierarchical Text Detection and Recognition [60.68100769639923]
このコンペティションは、テキストの検出と認識を共同で行うディープラーニングモデルとシステムの研究を促進することを目的としている。
提案するコンペティション組織の詳細について,タスク,データセット,評価,スケジュールなどを紹介する。
大会期間中(2023年1月2日から2023年4月1日まで)、20チーム以上から少なくとも50人が提案された2つのタスクで応募された。
論文 参考訳(メタデータ) (2023-05-16T18:56:12Z) - ICDAR 2023 Competition on Reading the Seal Title [58.866588777012744]
この領域での研究を促進するため、シールタイトル(ReST)を読むためのICDAR 2023コンペティションを組織した。
我々は1万の実際のシールデータからなるデータセットを構築し、最も一般的なシールのクラスをカバーし、すべてのシールタイトルテキストにテキストとテキストの内容をラベル付けした。
大会には、第1タスクの応募28件、第2タスクの応募25件を含む、学界や業界から53人の参加者が集まった。
論文 参考訳(メタデータ) (2023-04-24T10:01:41Z) - The Second International Verification of Neural Networks Competition
(VNN-COMP 2021): Summary and Results [1.4824891788575418]
本報告では,第2回国際ニューラルネットワークコンペティション(VNN-COMP 2021)を要約する。
競争の目標は、ニューラルネットワークの検証における最先端の手法の客観的比較を提供することである。
このレポートでは、このコンペティションから学んだルール、ベンチマーク、参加ツール、結果、教訓を要約する。
論文 参考訳(メタデータ) (2021-08-31T01:29:56Z) - Analysing Affective Behavior in the second ABAW2 Competition [70.86998050535944]
ABAW2 2021コンペティションは、IEEE FG 2020-コンペティションと共同で開催された最初の非常に成功したABAWコンペティションに続く第2回である。
論文 参考訳(メタデータ) (2021-06-14T11:30:19Z) - Towards robust and domain agnostic reinforcement learning competitions [12.731614722371376]
強化学習コンペティションは標準研究ベンチマークの基礎を形成している。
それにもかかわらず、ほとんどの課題は、同じ根本的な問題に悩まされている。
本稿では,これらの障壁を克服するアルゴリズムの開発を促進する,競争設計の新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。