論文の概要: Uncertainty-Aware Critic Augmentation for Hierarchical Multi-Agent EV Charging Control
- arxiv url: http://arxiv.org/abs/2412.18047v3
- Date: Mon, 17 Feb 2025 11:19:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:03:20.518810
- Title: Uncertainty-Aware Critic Augmentation for Hierarchical Multi-Agent EV Charging Control
- Title(参考訳): 階層型マルチエージェントEV充電制御のための不確実性を考慮した批判的増大
- Authors: Lo Pang-Yun Ting, Ali Şenol, Huan-Yang Wang, Hsu-Chao Lai, Kun-Ta Chuang, Huan Liu,
- Abstract要約: ビルとEVの両方のエネルギー需要を規制する新しいリアルタイム充電制御であるHUCAを提案する。
HUCAは階層的なアクタークリティカルネットワークを使用して、動的価格シナリオにおけるEV充電の必要性を考慮して、建物の電力コストを動的に削減する。
実世界の電気データセットのシミュレーションと不確実な離脱シナリオによる実験により、HUCAは総電力コストにおいてベースラインを上回っていることが示された。
- 参考スコア(独自算出の注目度): 9.96602699887327
- License:
- Abstract: The advanced bidirectional EV charging and discharging technology, aimed at supporting grid stability and emergency operations, has driven a growing interest in workplace applications. It not only reduces electricity expenses but also enhances the resilience in handling practical matters, such as peak power limitation, fluctuating energy prices, and unpredictable EV departures. Considering these factors systematically can benefit energy efficiency in office buildings and for EV users simultaneously. To employ AI to address these issues, we propose HUCA, a novel real-time charging control for regulating energy demands for both the building and EVs. HUCA employs hierarchical actor-critic networks to dynamically reduce electricity costs in buildings, accounting for the needs of EV charging in the dynamic pricing scenario. To tackle the uncertain EV departures, we introduce a new critic augmentation to account for departure uncertainties in evaluating the charging decisions, while maintaining the robustness of the charging control. Experiments on real-world electricity datasets under both simulated certain and uncertain departure scenarios demonstrate that HUCA outperforms baselines in terms of total electricity costs while maintaining competitive performance in fulfilling EV charging requirements. A case study also manifests that HUCA effectively balances energy supply between the building and EVs based on real-time information, showcasing its potential as a key AI-driven solution for vehicle charging control.
- Abstract(参考訳): グリッド安定性と緊急操作をサポートするための高度な双方向EV充電および放電技術は、職場アプリケーションへの関心を高めている。
電力コストを削減できるだけでなく、ピーク電力制限、エネルギー価格の変動、予測不可能なEVの出発など、実用上の問題に対処するレジリエンスも向上する。
これらの要因を考慮すると、オフィスビルとEV利用者のエネルギー効率を同時に向上させることができる。
これらの問題を解決するためにAIを活用するために,建物とEVの両方のエネルギー需要を規制する新しいリアルタイム充電制御であるHUCAを提案する。
HUCAは階層的なアクタークリティカルネットワークを使用して、動的価格シナリオにおけるEV充電の必要性を考慮して、建物の電力コストを動的に削減する。
そこで我々は,充電制御の堅牢性を維持しつつ,充電決定の評価において不確実性を考慮し,不確実性を考慮に入れた新たな批評家強化を導入する。
HUCAは、EV充電要求を満たす上での競争性能を維持しながら、電力コストのトータルでベースラインを上回っていることを示す。
ケーススタディでは、HUCAはリアルタイム情報に基づいて建物とEV間のエネルギー供給を効果的にバランスさせ、車両の充電制御における重要なAI駆動ソリューションとしての可能性を示している。
関連論文リスト
- A Deep Q-Learning based Smart Scheduling of EVs for Demand Response in
Smart Grids [0.0]
本研究では、Deep Q-Learningを利用して、マイクログリッド内におけるEVの充電および排出活動のスケジューリングを行うモデルフリーソリューションを提案する。
我々は,EVスケジューリング動作に対する特定の報酬に基づいて状態の値を評価するためにベルマン方程式を適用し,ニューラルネットワークを用いて利用可能な動作に対するQ値とエプシロングレーディアルゴリズムを用いて,目標エネルギープロファイルを満たすために,エクスプロイトと探索のバランスをとる。
論文 参考訳(メタデータ) (2024-01-05T06:04:46Z) - A Data-Driven Framework for Improving Public EV Charging Infrastructure:
Modeling and Forecasting [13.950084838642228]
既存の充電インフラは、急速に増加する充電需要を維持できなくなるのではないかと考えられている。
現在、適切なQoE指標がなければ、EV充電ステーションの性能を評価するのに、オペレーターは著しく困難に直面している。
本稿では,新規かつオリジナルなQoEパフォーマンス指標の定式化を通じて,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2023-12-08T19:37:15Z) - Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
再生可能エネルギーの台頭は、地域グリッドのエネルギー収支に技術的および運用上の課題をもたらす電気自動車(EV)へのシフトと一致している。
複数のEVからグリッドへの電力フローの調整には、高度なアルゴリズムとロードバランシング戦略が必要である。
本稿では,安定した電力供給と安定したローカルグリッドの維持を目標として,一日のEVフリート調整モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T15:50:37Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - An Efficient Distributed Multi-Agent Reinforcement Learning for EV
Charging Network Control [2.5477011559292175]
本稿では,EV所有者のプライバシ保護を優先する分散マルチエージェント強化学習(MARL)充電フレームワークを提案する。
その結果、CTDEフレームワークは、ネットワークコストを削減し、充電ネットワークの性能を向上させることを示した。
論文 参考訳(メタデータ) (2023-08-24T16:53:52Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
我々は、コネクテッドかつ自律的な自動車充電インフラ(CAV-CI)のための合理的意思決定支援システム(RDSS)の設計について検討する。
検討されたCAV-CIでは、配電系統オペレーター(DSO)が電気自動車供給装置(EVSE)を配備し、人間駆動のコネクテッドカー(CV)と自動運転車(AV)のためのEV充電設備を提供する。
人力EVによる充電要求は、実際の需要よりもエネルギーと充電時間を必要とすると不合理になる。
我々は,CAV-CIが解決する新たなリスク対向型マルチエージェント学習システム(ALS)を提案する。
論文 参考訳(メタデータ) (2021-08-02T02:38:15Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。