Fréchet regression with implicit denoising and multicollinearity reduction
- URL: http://arxiv.org/abs/2412.18247v2
- Date: Sat, 29 Mar 2025 12:06:41 GMT
- Title: Fréchet regression with implicit denoising and multicollinearity reduction
- Authors: Dou El Kefel Mansouri, Seif-Eddine Benkabou, Khalid Benabdeslem,
- Abstract summary: Fr'echet regression extends linear regression to model complex responses in metric spaces.<n>We present an extension of the Global Fr'echet re gression model that enables explicit modeling of relationships between input variables and multiple responses.
- Score: 1.5771347525430772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fr\'echet regression extends linear regression to model complex responses in metric spaces, making it particularly relevant for multi-label regression, where eachinstance can have multiple associated labels. However, addressing noise and dependencies among predictors within this framework remains un derexplored. In this paper, we present an extension of the Global Fr\'echet re gression model that enables explicit modeling of relationships between input variables and multiple responses. To address challenges arising from noise and multicollinearity, we propose a novel framework based on implicit regu larization, which preserves the intrinsic structure of the data while effectively capturing complex dependencies. Our approach ensures accurate and efficient modeling without the biases introduced by traditional explicit regularization methods. Theoretical guarantees are provided, and the performance of the proposed method is demonstrated through numerical experiments.
Related papers
- RieszBoost: Gradient Boosting for Riesz Regression [49.737777802061984]
We propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form.
We show that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals.
arXiv Detail & Related papers (2025-01-08T23:04:32Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection [25.195711274756334]
We propose an Adaptive Collaborative Correlation lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) method to address these issues.
Specifically, a generalized regression model equipped with an extended uncorrelated constraint is introduced to select discriminative yet irrelevant features.
The correlation instance and label correlation are integrated into the proposed regression model to adaptively learn both the sample similarity graph and the label similarity graph.
arXiv Detail & Related papers (2024-06-18T01:47:38Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
arXiv Detail & Related papers (2023-05-16T08:37:54Z) - Correcting for Selection Bias and Missing Response in Regression using
Privileged Information [1.5049442691806052]
We propose a novel imputation-based regression method, named repeated regression, that is suitable for Privilegedly Missing at Random (PMAR)
We empirically assess the performance of the proposed methods with extensive simulated experiments and on a synthetically augmented real-world dataset.
arXiv Detail & Related papers (2023-03-29T15:42:17Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex.
We consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization.
We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models.
arXiv Detail & Related papers (2022-11-02T13:54:07Z) - Flexible variable selection in the presence of missing data [0.0]
We propose a non-parametric variable selection algorithm combined with multiple imputation to develop flexible panels in the presence of missing-at-random data.
We show that our proposal has good operating characteristics and results in panels with higher classification and variable selection performance.
arXiv Detail & Related papers (2022-02-25T21:41:03Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.
Our first method uses these weights as the local average to solve the conditional Fr'echet mean.
Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Machine Learning for Multi-Output Regression: When should a holistic
multivariate approach be preferred over separate univariate ones? [62.997667081978825]
Tree-based ensembles such as the Random Forest are modern classics among statistical learning methods.
We compare these methods in extensive simulations to help in answering the primary question when to use multivariate ensemble techniques.
arXiv Detail & Related papers (2022-01-14T08:44:25Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions.
The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions.
Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric.
arXiv Detail & Related papers (2021-10-25T17:09:59Z) - Spatially and Robustly Hybrid Mixture Regression Model for Inference of
Spatial Dependence [15.988679065054498]
We propose a Spatial Robust Mixture Regression model to investigate the relationship between a response variable and a set of explanatory variables over the spatial domain.
Our method integrates the robust finite mixture Gaussian regression model with spatial constraints, to simultaneously handle the spatial nonstationarity, local homogeneity, and outliers.
Experimental results on many synthetic and real-world datasets demonstrate the robustness, accuracy, and effectiveness of our proposed method.
arXiv Detail & Related papers (2021-09-01T16:29:46Z) - Causally-motivated Shortcut Removal Using Auxiliary Labels [63.686580185674195]
Key challenge to learning such risk-invariant predictors is shortcut learning.
We propose a flexible, causally-motivated approach to address this challenge.
We show both theoretically and empirically that this causally-motivated regularization scheme yields robust predictors.
arXiv Detail & Related papers (2021-05-13T16:58:45Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
We study the classical problem of recovering a multidimensional source process from observations of mixtures of this process.
We show that this recovery is possible for many popular models of processes (up to order and monotone scaling of their coordinates) if the mixture is given by a sufficiently differentiable, invertible function.
arXiv Detail & Related papers (2021-02-04T20:28:44Z) - Reduced-Rank Tensor-on-Tensor Regression and Tensor-variate Analysis of
Variance [11.193504036335503]
We extend the classical multivariate regression model to exploit such structure.
We obtain maximum likelihood estimators via block-relaxation algorithms.
A separate application performs three-way TANOVA on the Labeled Faces in the Wild image database.
arXiv Detail & Related papers (2020-12-18T14:04:41Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.