Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression
- URL: http://arxiv.org/abs/2412.18571v1
- Date: Tue, 24 Dec 2024 17:51:42 GMT
- Title: Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression
- Authors: Co Tran, Quoc-Bao Tran, Hy Truong Son, Thang N Dinh,
- Abstract summary: Hard optimization problems, often mapped to Ising models, promise potential solutions with quantum advantage but are constrained by limited qubit counts in near-term devices.
We present an innovative quantum-inspired framework that dynamically compresses large Ising models to fit available quantum hardware of different sizes.
- Score: 1.464272698399657
- License:
- Abstract: Hard combinatorial optimization problems, often mapped to Ising models, promise potential solutions with quantum advantage but are constrained by limited qubit counts in near-term devices. We present an innovative quantum-inspired framework that dynamically compresses large Ising models to fit available quantum hardware of different sizes. Thus, we aim to bridge the gap between large-scale optimization and current hardware capabilities. Our method leverages a physics-inspired GNN architecture to capture complex interactions in Ising models and accurately predict alignments among neighboring spins (aka qubits) at ground states. By progressively merging such aligned spins, we can reduce the model size while preserving the underlying optimization structure. It also provides a natural trade-off between the solution quality and size reduction, meeting different hardware constraints of quantum computing devices. Extensive numerical studies on Ising instances of diverse topologies show that our method can reduce instance size at multiple levels with virtually no losses in solution quality on the latest D-wave quantum annealers.
Related papers
- Distributed Quantum Dynamics on Near-Term Quantum Processors [3.6936647278761283]
We develop and implement a distributed variant of the projected Variational Quantum Dynamics.
We employ the wire cutting technique, which can be executed on the existing devices without quantum or classical communication.
We demonstrate the full variational training on noisy simulators, and execute and perform the reconstruction on real IBM quantum devices.
arXiv Detail & Related papers (2025-02-05T19:01:04Z) - Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement [0.0]
We propose a novel architecture, which incorporates pointwise convolution within a quantum neural network framework.
By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships.
In experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2024-12-02T08:03:59Z) - Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Divide and Conquer for Combinatorial Optimization and Distributed
Quantum Computation [3.8221353389253676]
We introduce the Quantum Divide and Conquer Algorithm (QDCA), a hybrid variational approach to mapping large optimization problems onto distributed quantum architectures.
This is achieved through the combined use of graph partitioning and quantum circuit cutting.
We simulate the QDCA on instances of the Maximum Independent Set problem and find that it is able to outperform similar classical algorithms.
arXiv Detail & Related papers (2021-07-15T18:00:32Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Hardware-Centric AutoML for Mixed-Precision Quantization [34.39845532939529]
Conventional quantization algorithm ignores the different hardware architectures and quantizes all the layers in a uniform way.
In this paper, we introduce the Hardware-Aware Automated Quantization (HAQ) framework which leverages the reinforcement learning to automatically determine the quantization policy.
Our framework effectively reduced the latency by 1.4-1.95x and the energy consumption by 1.9x with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization.
arXiv Detail & Related papers (2020-08-11T17:30:22Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments.
We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions.
arXiv Detail & Related papers (2020-07-04T19:07:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.