Optimizing Quantum Variational Circuits with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2109.03188v1
- Date: Tue, 7 Sep 2021 16:48:39 GMT
- Title: Optimizing Quantum Variational Circuits with Deep Reinforcement Learning
- Authors: Owen Lockwood
- Abstract summary: We evaluate the potential of contemporary methods in deep reinforcement learning to augment gradient based optimization routines in quantum variational circuits.
We find that reinforcement learning augmenteds consistently outperform gradient descent in noisy environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum Machine Learning (QML) is considered to be one of the most promising
applications of near term quantum devices. However, the optimization of quantum
machine learning models presents numerous challenges arising from the
imperfections of hardware and the fundamental obstacles in navigating an
exponentially scaling Hilbert space. In this work, we evaluate the potential of
contemporary methods in deep reinforcement learning to augment gradient based
optimization routines in quantum variational circuits. We find that
reinforcement learning augmented optimizers consistently outperform gradient
descent in noisy environments. All code and pretrained weights are available to
replicate the results or deploy the models at
https://github.com/lockwo/rl_qvc_opt.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Learning Parameterized Quantum Circuits with Quantum Gradient [8.64967968665265]
We introduce a nested optimization model that leverages quantum gradient to enhance PQC learning for gradient-type cost functions.
Our approach utilizes quantum algorithms to identify and overcome a type of gradient vanishing-a persistent challenge in PQC learning.
arXiv Detail & Related papers (2024-09-30T07:50:47Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Policy Gradient Algorithm with Optimized Action Decoding [1.3946033794136758]
We introduce a novel quality measure that enables us to optimize the classical post-processing required for action selection.
With this technique, we successfully execute a full training routine on a 5-qubit hardware device.
arXiv Detail & Related papers (2022-12-13T15:42:10Z) - QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning [4.134992977596645]
We present Quantum-circuit Controlled Alternating Koopman learning (QuACK), a novel framework that leverages an alternating algorithm for efficient prediction of gradient dynamics on quantum computers.
We demonstrate QuACK's remarkable ability to accelerate gradient-based optimization across a range of applications in quantum optimization and machine learning.
arXiv Detail & Related papers (2022-11-02T17:59:25Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Optimal training of variational quantum algorithms without barren
plateaus [0.0]
Variational quantum algorithms (VQAs) promise efficient use of near-term quantum computers.
We show how to optimally train a VQA for learning quantum states.
We propose the application of Gaussian kernels for quantum machine learning.
arXiv Detail & Related papers (2021-04-29T17:54:59Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.