論文の概要: High-accuracy sampling from constrained spaces with the Metropolis-adjusted Preconditioned Langevin Algorithm
- arxiv url: http://arxiv.org/abs/2412.18701v2
- Date: Tue, 31 Dec 2024 00:05:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:33:37.870499
- Title: High-accuracy sampling from constrained spaces with the Metropolis-adjusted Preconditioned Langevin Algorithm
- Title(参考訳): Metropolis-adjusted Preconditioned Langevin Algorithm を用いた制約空間からの高精度サンプリング
- Authors: Vishwak Srinivasan, Andre Wibisono, Ashia Wilson,
- Abstract要約: 本稿では,$mathbbRd$の適切な凸部分集合である対象分布から近似サンプリングを行う1次サンプリング法を提案する。
提案手法は,事前条件付きLangevinアルゴリズムの単一ステップで生成したマルコフ連鎖にメトロポリス・ハスティングスフィルタを適用した結果である。
- 参考スコア(独自算出の注目度): 12.405427902037971
- License:
- Abstract: In this work, we propose a first-order sampling method called the Metropolis-adjusted Preconditioned Langevin Algorithm for approximate sampling from a target distribution whose support is a proper convex subset of $\mathbb{R}^{d}$. Our proposed method is the result of applying a Metropolis-Hastings filter to the Markov chain formed by a single step of the preconditioned Langevin algorithm with a metric $\mathscr{G}$, and is motivated by the natural gradient descent algorithm for optimisation. We derive non-asymptotic upper bounds for the mixing time of this method for sampling from target distributions whose potentials are bounded relative to $\mathscr{G}$, and for exponential distributions restricted to the support. Our analysis suggests that if $\mathscr{G}$ satisfies stronger notions of self-concordance introduced in Kook and Vempala (2024), then these mixing time upper bounds have a strictly better dependence on the dimension than when is merely self-concordant. We also provide numerical experiments that demonstrates the practicality of our proposed method. Our method is a high-accuracy sampler due to the polylogarithmic dependence on the error tolerance in our mixing time upper bounds.
- Abstract(参考訳): 本研究では,$\mathbb{R}^{d}$の適切な凸部分集合である対象分布からの近似サンプリングを行うために,Metropolis-adjusted Preconditioned Langevin Algorithmと呼ばれる一階サンプリング手法を提案する。
提案手法は,事前条件付きLangevinアルゴリズムの単一ステップで生成したマルコフ連鎖にMetropolis-Hastingsフィルタを適用して,パラメータを$\mathscr{G}$とし,最適化のための自然勾配勾配アルゴリズムで動機付ける。
本手法の混合時間における非漸近上界は、ポテンシャルが$\mathscr{G}$に対して有界な対象分布からサンプリングし、指数分布は支持に制限される。
我々の分析は、Kook と Vempala (2024) で導入された自己調和の強い概念を $\mathscr{G}$ で満たすなら、これらの混合時間上界は単に自己調和である時よりも次元に厳密に依存する。
また,提案手法の実用性を示す数値実験を行った。
本手法は, 混合時間上界における誤差耐性の多元対数依存性から, 高精度なサンプリング器である。
関連論文リスト
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Fast sampling from constrained spaces using the Metropolis-adjusted Mirror Langevin algorithm [12.405427902037971]
本稿では,コンパクトかつ凸集合を持つ分布からの近似サンプリング法を提案する。
このアルゴリズムは、ミラーランゲヴィンの単一ステップによって誘導されるマルコフ連鎖にアセプション-リジェクションフィルタを追加する。
近似的制約サンプリングの誤差耐性に対する指数関数的に優れた依存性が得られる。
論文 参考訳(メタデータ) (2023-12-14T11:11:58Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
平均場ランゲヴィンのダイナミクスを、対称で証明可能な収束した更新で、初めて確率分布に対する最小の最適化に拡張する。
また,時間と粒子の離散化機構について検討し,カオス結果の新たな均一時間伝播を証明した。
論文 参考訳(メタデータ) (2023-12-02T13:01:29Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
本稿では,凸/凹凸 min-max 問題に対して,ほぼ最適収束率を許容する一階法を提案する。
我々の研究は、近点法の更新規則を精度良く近似できるという事実に基づいている。
論文 参考訳(メタデータ) (2023-01-10T12:18:47Z) - Resolving the Mixing Time of the Langevin Algorithm to its Stationary
Distribution for Log-Concave Sampling [34.66940399825547]
本稿では,Langevinアルゴリズムの定常分布に対する混合時間の特徴について述べる。
本稿では,差分プライバシー文献からサンプリング文献へのアプローチを紹介する。
論文 参考訳(メタデータ) (2022-10-16T05:11:16Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
粒子ダイナミック(IPD)に対するグラディエント・ランゲヴィン・ダイナミクス(SGLD)やランダムバッチ法(RBM)などのサンプリングアルゴリズムの近似を考察する。
近似によって生じる雑音は中央極限定理(CLT)によりほぼガウス的であるが、ブラウン運動はまさにガウス的である。
この構造を利用して拡散過程内の近似誤差を吸収し、これらのアルゴリズムの収束保証を改善する。
論文 参考訳(メタデータ) (2022-06-08T10:17:40Z) - Convergence of the Riemannian Langevin Algorithm [10.279748604797911]
計量$g$の多様体上の自然測度に関して、密度$nu$の分布からサンプリングする問題を研究する。
対数障壁によって定義されるポリトープに制限された等尺的密度をサンプリングする手法が,本手法の特例である。
論文 参考訳(メタデータ) (2022-04-22T16:56:00Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。