論文の概要: Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM inference
- arxiv url: http://arxiv.org/abs/2412.18934v1
- Date: Wed, 25 Dec 2024 15:45:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:10.034231
- Title: Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM inference
- Title(参考訳): Dovetail: LLM推論のためのCPU/GPU不均一な投機的デコーディング
- Authors: Libo Zhang, Zhaoning Zhang, Baizhou Xu, Songzhu Mei, Dongsheng Li,
- Abstract要約: Dovetailは、GPUにドラフトモデルをデプロイしてドラフトトークンを生成し、ターゲットモデルをCPU上で並列検証可能にするアプローチである。
Dovetailは3GBのVRAMを使用してLLaMA2-Chat-7Bで毎秒5.86トークンの推論速度を実現しており、CPUのみの推論よりも約2.77倍改善されている。
- 参考スコア(独自算出の注目度): 20.68731158617374
- License:
- Abstract: Due to the high resource demands of Large Language Models (LLMs), achieving widespread deployment on consumer-grade devices presents significant challenges. Typically, personal or consumer-grade devices, including servers configured prior to the era of large-scale models, generally have relatively weak GPUs and relatively strong CPUs. However, most current methods primarily depend on GPUs for computation. Therefore, we propose Dovetail, an approach that deploys the draft model on the GPU to generate draft tokens while allowing the target model to perform parallel verification on the CPU, thereby improving the utilization of all available hardware resources and occupying less inter-device communication bandwidth. Accordingly, we have redesigned the draft model to better align with heterogeneous hardware characteristics. To this end, we implemented several optimizations: reducing the number of draft tokens to mitigate latency in parallel verification, increasing the depth of the draft model to enhance its predictive capacity, and introducing DGF (Dynamic Gating Fusion) to improve the integration of features and token embeddings. In the HumanEval benchmark, Dovetail achieved an inference speed of 5.86 tokens per second for LLaMA2-Chat-7B using 3GB of VRAM, representing an approximately 2.77x improvement over CPU-only inference. Furthermore, the inference speed was increased to 8 tokens per second when utilizing 7GB of VRAM.
- Abstract(参考訳): LLM(Large Language Models)の高リソース要求のため、コンシューマグレードデバイスへの広範なデプロイメントを実現することが大きな課題となっている。
通常、大規模モデルの時代に設定されたサーバを含む個人用または消費者向けのデバイスは、一般的に比較的弱いGPUと比較的強いCPUを持つ。
しかし、現在のほとんどの手法は計算のGPUに依存している。
そこで本稿では,GPU上にドラフトモデルをデプロイしてドラフトトークンを生成するアプローチであるDovetailを提案する。
そのため、不均一なハードウェア特性との整合性を向上するため、ドラフトモデルを再設計した。
この目的のために、並列検証における遅延を軽減するために、ドラフトトークンの数を削減し、予測能力を高めるためにドラフトモデルの深さを拡大し、機能の統合とトークン埋め込みを改善するためにDGF(Dynamic Gating Fusion)を導入した。
HumanEvalベンチマークでは、3GBのVRAMを使用してLLaMA2-Chat-7Bで毎秒5.86トークンの推論速度を達成した。
さらに、7GBのVRAMを使用すると、推論速度が毎秒8トークンに向上した。
関連論文リスト
- MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoEアーキテクチャは、推論コストの比例的な増加なしにモデルキャパシティを向上できることで有名である。
MoE-LightningはCPU-GPU-I/OパイプラインスケジュールであるCGOPipeを導入し、ページ重み付けにより高いリソース利用を実現する。
MoE-Lightningは、単一のT4 GPU(16GB)上でMixtral 8x7Bの最先端オフロード可能なLLM推論システムよりも最大10.3倍高いスループットを実現することができる
論文 参考訳(メタデータ) (2024-11-18T01:06:12Z) - LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones [10.435069781620957]
効率的な視覚バックボーンの研究は、畳み込みとトランスフォーマーブロックの混合モデルに進化しつつある。
我々は、MACではなく、実際のスループットとレイテンシの観点から、一般的なモジュールとアーキテクチャ設計の選択を分析します。
マクロデザインとマイクロデザインを組み合わせることで,LowFormerと呼ばれる,ハードウェア効率のよいバックボーンネットワークの新たなファミリを作ります。
論文 参考訳(メタデータ) (2024-09-05T12:18:32Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency
Trade-off in Language Model Inference [57.119047493787185]
本稿では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56times$wall clock time speedupを無視できる精度低下で実現する方法を示す。
実際、本手法では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56Times$wall clock time speedupを無視できる精度で実現している。
論文 参考訳(メタデータ) (2024-01-08T17:29:16Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
高速コア上での低コストかつ高効率な大規模生成モデル推論を実現するためのFlash-LLMを提案する。
SpMMカーネルレベルでは、Flash-LLMは最先端のライブラリであるSputnikとSparTAをそれぞれ平均2.9倍、1.5倍で上回っている。
論文 参考訳(メタデータ) (2023-09-19T03:20:02Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - Communication-Efficient TeraByte-Scale Model Training Framework for
Online Advertising [32.5337643852876]
CTR(Click-Through Rate)予測は、オンライン広告業界において重要な要素である。
大規模な広告モデルのための既存のGPUトレーニングにおける2つの大きな課題を特定します。
ハードウェアトポロジをアルゴリズム設計に結合するハードウェア対応トレーニングワークフローを提案する。
論文 参考訳(メタデータ) (2022-01-05T18:09:11Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。