論文の概要: Optimal Federated Learning for Functional Mean Estimation under Heterogeneous Privacy Constraints
- arxiv url: http://arxiv.org/abs/2412.18992v1
- Date: Wed, 25 Dec 2024 22:06:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:24:25.692896
- Title: Optimal Federated Learning for Functional Mean Estimation under Heterogeneous Privacy Constraints
- Title(参考訳): 不均一プライバシー制約下における関数平均推定のための最適フェデレーション学習
- Authors: Tony Cai, Abhinav Chakraborty, Lasse Vuursteen,
- Abstract要約: Federated Learning(FL)は、データのプライバシとセキュリティを保護するために設計された分散機械学習技術である。
本稿では,フェデレーション環境での離散サンプリングデータからの最適関数平均推定の問題に対処する。
- 参考スコア(独自算出の注目度): 1.3654846342364308
- License:
- Abstract: Federated learning (FL) is a distributed machine learning technique designed to preserve data privacy and security, and it has gained significant importance due to its broad range of applications. This paper addresses the problem of optimal functional mean estimation from discretely sampled data in a federated setting. We consider a heterogeneous framework where the number of individuals, measurements per individual, and privacy parameters vary across one or more servers, under both common and independent design settings. In the common design setting, the same design points are measured for each individual, whereas in the independent design, each individual has their own random collection of design points. Within this framework, we establish minimax upper and lower bounds for the estimation error of the underlying mean function, highlighting the nuanced differences between common and independent designs under distributed privacy constraints. We propose algorithms that achieve the optimal trade-off between privacy and accuracy and provide optimality results that quantify the fundamental limits of private functional mean estimation across diverse distributed settings. These results characterize the cost of privacy and offer practical insights into the potential for privacy-preserving statistical analysis in federated environments.
- Abstract(参考訳): Federated Learning(FL)は、データのプライバシとセキュリティを保護するために設計された、分散機械学習技術である。
本稿では,フェデレーション環境での離散サンプリングデータからの最適関数平均推定の問題に対処する。
我々は、共通の設計設定と独立した設計設定の両方の下で、個人数、個人毎の測定値、プライバシパラメータが1つ以上のサーバで異なる異種フレームワークを考える。
共通設計設定では、各個人ごとに同じ設計点が測定されるのに対し、独立設計では、各個人はそれぞれのランダムな設計点のコレクションを持つ。
本フレームワークでは,分散プライバシ制約下での共通設計と独立設計の微妙な相違を浮き彫りにして,基礎となる平均関数の推定誤差の最小値と下位値を確立する。
本稿では,プライバシと精度の最適なトレードオフを実現するアルゴリズムを提案し,多様な分散環境におけるプライベート関数平均推定の基本的な限界を定量化する最適性結果を提供する。
これらの結果は、プライバシのコストを特徴付け、フェデレーション環境におけるプライバシー保護統計分析の可能性に関する実践的な洞察を提供する。
関連論文リスト
- Distributed, communication-efficient, and differentially private estimation of KL divergence [15.294136011320433]
分散された機密性の高いデータを管理する上で重要なタスクは、分散の変化の度合いを測定することである。
差分プライバシの下で,計算のフェデレーションモデル間でのKL分散を推定するための新しいアルゴリズムアプローチについて述べる。
論文 参考訳(メタデータ) (2024-11-25T15:20:40Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints [5.3595271893779906]
本研究では,異なるサーバにまたがる分散サンプルのコンテキストにおける非パラメトリック回帰のためのフェデレーション学習について検討した。
統計の正確さとプライバシーの保護のトレードオフに光を当てている。
論文 参考訳(メタデータ) (2024-06-10T19:34:07Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
1ビット通信制約を伴う個別分布推定問題を考える。
1ビット通信制約下での最悪のトレードオフの1次を特徴付ける。
これらの結果は,1ビット通信制約下でのプライバシユーティリティトレードオフの最適依存性を示す。
論文 参考訳(メタデータ) (2023-10-17T05:21:19Z) - Personalized Graph Federated Learning with Differential Privacy [6.282767337715445]
本稿では、分散接続されたサーバとそのエッジデバイスが協調してデバイスやクラスタ固有のモデルを学習する、パーソナライズされたグラフフェデレーション学習(PGFL)フレームワークを提案する。
本稿では、差分プライバシー、特にノイズシーケンスがモデル交換を行うゼロ集中差分プライバシーを利用するPGFL実装の変種について検討する。
分析の結果,このアルゴリズムは,ゼロ集中型差分プライバシーの観点から,全クライアントの局所的な差分プライバシを保証することがわかった。
論文 参考訳(メタデータ) (2023-06-10T09:52:01Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。