論文の概要: Mobile Robots through Task-Based Human Instructions using Incremental Curriculum Learning
- arxiv url: http://arxiv.org/abs/2412.19159v1
- Date: Thu, 26 Dec 2024 10:38:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:18.054865
- Title: Mobile Robots through Task-Based Human Instructions using Incremental Curriculum Learning
- Title(参考訳): インクリメンタルカリキュラム学習を用いたタスクベースヒューマンインストラクションによる移動ロボット
- Authors: Muhammad A. Muttaqien, Ayanori Yorozu, Akihisa Ohya,
- Abstract要約: 本稿では,インクリメンタルカリキュラム学習(ICL)と深層強化学習(DRL)の統合について検討する。
人間の学習で直面する進歩的な複雑さを反映したカリキュラムを採用することで、我々のアプローチは、時間とともにロボットの複雑な命令の解釈と実行能力を体系的に強化する。
- 参考スコア(独自算出の注目度): 1.3518297878940662
- License:
- Abstract: This paper explores the integration of incremental curriculum learning (ICL) with deep reinforcement learning (DRL) techniques to facilitate mobile robot navigation through task-based human instruction. By adopting a curriculum that mirrors the progressive complexity encountered in human learning, our approach systematically enhances robots' ability to interpret and execute complex instructions over time. We explore the principles of DRL and its synergy with ICL, demonstrating how this combination not only improves training efficiency but also equips mobile robots with the generalization capability required for navigating through dynamic indoor environments. Empirical results indicate that robots trained with our ICL-enhanced DRL framework outperform those trained without curriculum learning, highlighting the benefits of structured learning progressions in robotic training.
- Abstract(参考訳): 本稿では,段階的なカリキュラム学習 (ICL) と深部強化学習 (DRL) 技術を統合することにより,タスクベースのヒューマンインストラクションによる移動ロボットナビゲーションを容易にする。
人間の学習で直面する進歩的な複雑さを反映したカリキュラムを採用することで、我々のアプローチは、時間とともにロボットの複雑な命令の解釈と実行能力を体系的に強化する。
我々はDRLの原理とICLとの相乗効果を探求し、この組み合わせによってトレーニング効率が向上するだけでなく、動的屋内環境をナビゲートするために必要な一般化能力を備えた移動ロボットも装備することを示した。
実験の結果,ICLに強化されたDRLフレームワークを用いてトレーニングしたロボットは,カリキュラムなしの学習者よりも優れており,ロボットトレーニングにおける構造化学習の進歩のメリットが強調されている。
関連論文リスト
- Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance [0.0]
強化学習(Reinforcement Learning, RL)は、ロボットが環境と対話することを可能にする重要なロボティクス技術として登場した。
本稿では,Deep Interactive Reinforcement Learningを通じて情報とアドバイスを保存・再利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-29T01:46:50Z) - Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion [66.69666636971922]
本稿では,ロボットの学習過程における探索を調節するポリシー正規化フレームワークであるAPRLを提案する。
APRLは四足歩行ロボットを、数分で完全に現実世界を歩けるように効率よく学習する。
論文 参考訳(メタデータ) (2023-10-26T17:51:46Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。
LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
論文 参考訳(メタデータ) (2023-06-14T17:27:10Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
我々は,学習効率と学習に基づく自律的把握の一般化性を向上させるために,階層的リワード機構を備えた物理誘導型深層強化学習を開発した。
本手法は3本指MICOロボットアームを用いたロボット把握作業において有効である。
論文 参考訳(メタデータ) (2022-05-26T18:01:56Z) - Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum
Learning Study [4.045850174820418]
本稿では,Domain Randomization(DR)と組み合わせたカリキュラム学習に基づく,コンタクトリッチな操作タスクのロボット学習の高速化に関する研究を行う。
挿入タスクのような位置制御ロボットによる複雑な産業組み立てタスクに対処する。
また,おもちゃのタスクを用いたシミュレーションでのみトレーニングを行う場合においても,現実のロボットに伝達可能なポリシーを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-04-27T11:08:39Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Human-Aware Robot Navigation via Reinforcement Learning with Hindsight
Experience Replay and Curriculum Learning [28.045441768064215]
強化学習アプローチは、シーケンシャルな意思決定問題を解決する優れた能力を示している。
本研究では,実演データを使わずにRLエージェントを訓練する作業を検討する。
密集層における最適なナビゲーションポリシーを効率的に学習するために,後視体験リプレイ(HER)とカリキュラム学習(CL)技術をRLに組み込むことを提案する。
論文 参考訳(メタデータ) (2021-10-09T13:18:11Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - SurRoL: An Open-source Reinforcement Learning Centered and dVRK
Compatible Platform for Surgical Robot Learning [78.76052604441519]
SurRoLは、ダ・ヴィンチ・リサーチキット(dVRK)と互換性のある外科ロボット学習のためのRL中心のシミュレーションプラットフォームである。
プラットフォームには10の学習ベースの外科的タスクが構築されており、実際の自律的な外科的実行に共通している。
シミュレーションにおいてRLアルゴリズムを用いてSurRoLの評価を行い、奥行き分析を行い、実際のdVRKにトレーニングされたポリシーをデプロイし、実世界でより優れた転送性を実現することを示す。
論文 参考訳(メタデータ) (2021-08-30T07:43:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。