論文の概要: Force-Based Robotic Imitation Learning: A Two-Phase Approach for Construction Assembly Tasks
- arxiv url: http://arxiv.org/abs/2501.14942v1
- Date: Fri, 24 Jan 2025 22:01:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:11.303224
- Title: Force-Based Robotic Imitation Learning: A Two-Phase Approach for Construction Assembly Tasks
- Title(参考訳): 力に基づくロボット模倣学習 : 組み立て作業のための2相アプローチ
- Authors: Hengxu You, Yang Ye, Tianyu Zhou, Jing Du,
- Abstract要約: 本稿では,ロボット学習を改善するための2段階システムを提案する。
第1フェーズは、ROS-Sharpを介して仮想シミュレータにリンクされたロボットアームを使用して、オペレータからリアルタイムデータをキャプチャする。
第2段階では、このフィードバックは、学習プロセスに力フィードバックを組み込むための生成的アプローチを用いて、ロボットの動き指示に変換される。
- 参考スコア(独自算出の注目度): 2.6092377907704254
- License:
- Abstract: The drive for efficiency and safety in construction has boosted the role of robotics and automation. However, complex tasks like welding and pipe insertion pose challenges due to their need for precise adaptive force control, which complicates robotic training. This paper proposes a two-phase system to improve robot learning, integrating human-derived force feedback. The first phase captures real-time data from operators using a robot arm linked with a virtual simulator via ROS-Sharp. In the second phase, this feedback is converted into robotic motion instructions, using a generative approach to incorporate force feedback into the learning process. This method's effectiveness is demonstrated through improved task completion times and success rates. The framework simulates realistic force-based interactions, enhancing the training data's quality for precise robotic manipulation in construction tasks.
- Abstract(参考訳): 建設における効率性と安全性の推進は、ロボット工学と自動化の役割を高めた。
しかし、溶接やパイプ挿入といった複雑な作業は、ロボットの訓練を複雑にする正確な適応力制御を必要とするため、課題となる。
本稿では,人間由来の力フィードバックを統合し,ロボット学習を改善するための2段階システムを提案する。
第1フェーズは、ROS-Sharpを介して仮想シミュレータにリンクされたロボットアームを使用して、オペレータからリアルタイムデータをキャプチャする。
第2段階では、このフィードバックは、学習プロセスに力フィードバックを組み込むための生成的アプローチを用いて、ロボットの動き指示に変換される。
本手法の有効性は,タスク完了時間の改善と成功率によって実証される。
このフレームワークは現実的な力に基づく相互作用をシミュレートし、建設作業における正確なロボット操作のためのトレーニングデータの質を高める。
関連論文リスト
- Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Bi-Manual Block Assembly via Sim-to-Real Reinforcement Learning [24.223788665601678]
2つのxArm6ロボットがU字型組立タスクを、シミュレーションで90%以上、実際のハードウェアで50%の確率で解決する。
以上の結果から,本システムは今後,深部RLおよびSim2Real転送バイマニュアルポリアの研究を刺激していきたいと願っている。
論文 参考訳(メタデータ) (2023-03-27T01:25:24Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Bi-Manual Manipulation and Attachment via Sim-to-Real Reinforcement
Learning [23.164743388342803]
シミュレーションで訓練された強化学習を用いて,両手作業の解法について検討する。
また、RLポリシーの効果的なトレーニングにつながるシミュレーション環境の変更についても検討する。
本研究では,2つのロボットアームが磁気的接続点を持つ2つのブロックを拾い上げるための接続タスクを設計する。
論文 参考訳(メタデータ) (2022-03-15T21:49:20Z) - Training Robots without Robots: Deep Imitation Learning for
Master-to-Robot Policy Transfer [4.318590074766604]
深層模倣学習は、デモサンプルのみを必要とするため、ロボット操作に有望である。
既存の実証手法には欠点があり、双方向遠隔操作には複雑な制御方式が必要であり、高価である。
本研究は、力覚フィードバックに基づく操作タスクをロボットに教える必要がない新しいM2Rポリシー伝達システムを提案する。
論文 参考訳(メタデータ) (2022-02-19T10:55:10Z) - In-air Knotting of Rope using Dual-Arm Robot based on Deep Learning [8.365690203298966]
深層学習に基づく双腕二本指ロボットを用いて,ロープの空中結節を成功させた。
全ての対象状態に対応する適切なロボット動作のマニュアル記述を事前に作成することは困難である。
そこで我々は,ロボットに2つの深層ニューラルネットワークを訓練し,そのセンサモデレータから収集したデータに基づいてボクノットとオーバーハンドノットを行うよう指示するモデルを構築した。
論文 参考訳(メタデータ) (2021-03-17T02:11:58Z) - Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks [0.0]
強化学習はロボットアームによる到達タスクの解決に成功している。
ハイドサイト体験再生探索技術により報奨信号の増大が, オフ・ポリティクス・エージェントの平均リターンを増加させることが示されている。
論文 参考訳(メタデータ) (2020-11-11T14:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。