Degrees of Entanglement in Systems of Three Indistinguishable Bosons: Revisiting the Greenberger-Horne-Zeilinge State
- URL: http://arxiv.org/abs/2412.19246v2
- Date: Wed, 09 Apr 2025 14:20:53 GMT
- Title: Degrees of Entanglement in Systems of Three Indistinguishable Bosons: Revisiting the Greenberger-Horne-Zeilinge State
- Authors: P. Céspedes, F. H. Holik, A. P. Majtey,
- Abstract summary: We study the problem of detecting genuine tripartite entanglement among systems of indistinguishable bosons.<n>In particular, we introduce a state of indistinguishable bosons with analogous properties to those of the standard GHZ state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the concept of entanglement for distinguishable particles is well established, defining entanglement and non-locality in systems of indistinguishable particles, which require the use of the (anti)symmetrization postulate, remains challenging, and multiple approaches have been proposed to address this issue. In this work we study the problem of detecting genuine tripartite entanglement among systems of indistinguishable bosons. A genuine entangled state is one that cannot be separable under any bipartition, where separability in the indistinguishable regime is defined by the existence of single particle properties within each subsystem, without the possibility of knowing which property belongs to which subsystem. We use an algorithm that allows us to search for these single particle properties and, consequently, rank states according to their degree of separability. In particular, we introduce a state of indistinguishable bosons with analogous properties to those of the standard GHZ state.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Practical Criteria for Entanglement and Nonlocality in Systems with Additive Observables [44.99833362998488]
For general bipartite mixed states, a sufficient and necessary mathematical condition for certifying entanglement and/or (Bell) non-locality remains unknown.
We derive very simple, handy criteria for detecting entanglement or non-locality in many cases.
We illustrate these results by analyzing the potential detection of entanglement and nonlocality in Higgs to ZZ decays at the LHC.
arXiv Detail & Related papers (2025-03-21T16:48:04Z) - Tailoring Bound State Geometry in High-Dimensional Non-Hermitian Systems [12.085380828370914]
The non-Hermitian effect (NHSE) creates barriers for the appearance of impurity bound states.
Our work reveals a geometry transition of bound state between concavity and convexity in high-dimensional non-Hermitian systems.
arXiv Detail & Related papers (2024-06-11T18:00:12Z) - A method to discriminate between localized and chaotic quantum systems [0.0]
We study whether a generic isolated quantum system initially set out of equilibrium can be considered as localized close to its initial state.
By tying the dynamical propagation in the Krylov basis to that in the basis of microstates, we infer qualitative criteria to distinguish systems that remain localized close to their initial state.
arXiv Detail & Related papers (2023-07-20T08:55:02Z) - Point-Gap Bound States in Non-Hermitian Systems [15.127226844505927]
We investigate the impurity-induced bound states in 1D non-Hermitian systems.
We establish an exact relationship between impurity potential and bound-state energy.
We show that the bound states residing in the point gaps with nonzero spectral winding exhibit sensitivity to boundary conditions.
arXiv Detail & Related papers (2023-05-18T18:00:09Z) - Multipartite entanglement detection based on generalized state-dependent
entropic uncertainty relation for multiple measurements [15.907303576427644]
We present the generalized state-dependent entropic uncertainty relations for multiple measurement settings.
We give the experimentally accessible lower bounds on both bipartite and tripartite entanglements.
arXiv Detail & Related papers (2022-11-02T06:26:07Z) - Generating indistinguishability within identical particle systems:
spatial deformations as quantum resource activators [0.24466725954625884]
Identical quantum subsystems can possess a property which does not have any classical counterpart: indistinguishability.
We present a coherent formalization of the concept of deformation in a general $N$-particle scenario.
We discuss the inherent role of spatial deformations as entanglement activators within the "spatially localized operations and classical communication" operational framework.
arXiv Detail & Related papers (2022-05-24T15:13:20Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Local indistinguishability and incompleteness of entangled orthogonal
bases: Method to generate two-element locally indistinguishable ensembles [0.0]
Local indistinguishability of states with the properties of unextendibility and uncompletability of entangled bases for bipartite and multipartite quantum systems.
We identify a method of constructing two-element ensembles, based on the concept of unextendible entangled bases, that can potentially lead to information sharing applications.
arXiv Detail & Related papers (2020-08-04T15:04:27Z) - Entanglement in indistinguishable particle systems [0.0]
Indistinguishability of identical particles hinders their individual addressability and has prompted diverse, sometimes discordant definitions of entanglement.
We show that only the latter approach is consistent with all three criteria, each of the others indeed violating at least one of them.
arXiv Detail & Related papers (2020-07-13T09:07:27Z) - Robustness and Independence of the Eigenstates with respect to the
Boundary Conditions across a Delocalization-Localization Phase Transition [15.907303576427644]
We focus on the many-body eigenstates across a localization-delocalization phase transition.
In the ergodic phase, the average of eigenstate overlaps $barmathcalO$ is exponential decay with the increase of the system size.
For localized systems, $barmathcalO$ is almost size-independent showing the strong robustness of the eigenstates.
arXiv Detail & Related papers (2020-05-19T10:19:52Z) - Entanglement as upper bounded for the nonlocality of a general two-qubit
system [16.676050048472963]
We systematically investigate the relationship between entanglement and nonlocality of a general two-qubit system.
We find that the nonlocality of two different two-qubit states can be optimally stimulated by the same nonlocality test setting.
arXiv Detail & Related papers (2020-04-17T16:42:27Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.