Signatures of the quantum skyrmion Hall effect in the Bernevig-Hughes-Zhang model
- URL: http://arxiv.org/abs/2412.19568v2
- Date: Mon, 30 Dec 2024 16:28:36 GMT
- Title: Signatures of the quantum skyrmion Hall effect in the Bernevig-Hughes-Zhang model
- Authors: Reyhan Ay, Adipta Pal, Ashley M. Cook,
- Abstract summary: We re-examine the canonical Bernevig-Hughes-Zhang (BHZ) model for the quantum spin Hall insulator.
We observe phenomena similar to those of the four dimensional Chern insulator, revealed by weakly breaking time-reversal symmetry.
- Score: 0.0
- License:
- Abstract: Given recent discovery of the quantum skyrmion Hall effect, we re-examine the related canonical Bernevig-Hughes-Zhang (BHZ) model for the quantum spin Hall insulator. Within the framework of the quantum skyrmion Hall effect, isospin degree(s) of freedom of the BHZ model encode additional spatial dimensions. Consistent with this framework, we observe phenomena similar to those of the four dimensional Chern insulator, revealed by weakly breaking time-reversal symmetry. Bulk-boundary correspondence of these states includes real-space boundary orbital angular momentum textures and gapless boundary modes that are robust against magnetic disorder, consistent with compactified three dimensional boundary Weyl nodes (WN$_F$s) of the quantum skyrmion Hall effect. These theoretical findings are furthermore consistent with past experimental work reporting unexpected edge conduction in HgTe quantum wells under applied Zeeman and orbital magnetic fields. This past work is therefore potentially the first known experimental observation of signatures of the quantum skyrmion Hall effect beyond the quantum Hall effect.
Related papers
- Observing the quantum Mpemba effect in quantum simulations [0.0]
We experimentally investigate the quantum Mpemba effect, where a tilted ferromagnet restores its symmetry more rapidly when it is farther from the symmetric state.
We present the first experimental evidence of the occurrence of this effect in a trapped-ion quantum simulator.
arXiv Detail & Related papers (2024-01-08T22:50:23Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Exploring Large-Scale Entanglement in Quantum Simulation [0.0]
Entanglement is a distinguishing feature of quantum many-body systems.
Here we perform experimental investigations of entanglement based on the entanglement Hamiltonian.
arXiv Detail & Related papers (2023-05-31T18:00:01Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Large-$N$ Chern insulators: lattice field theory and quantum simulation
approaches to correlation effects in the quantum anomalous Hall effect [0.0]
We give a detailed description of our multidisciplinary approach to understand the fate of the quantum anomalous Hall (QAH) phases.
We show that tensor-network algorithms based on projected entangled pairs can be used to improve our understanding of the strong-coupling limit.
We also present a detailed scheme that uses ultra-cold atoms in optical lattices with synthetic spin-orbit coupling to build quantum simulators.
arXiv Detail & Related papers (2021-11-08T13:22:14Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Observation of interaction induced blockade and local spin freezing in a
NMR quantum simulator [0.866217922377209]
We experimentally emulate interaction induced blockade and local spin freezing in two and three qubit Nuclear Magnetic Resonance architecture.
These phenomena are identical to the Rydberg blockade and Rydberg biased freezing.
arXiv Detail & Related papers (2020-05-09T13:38:41Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.