Optical signatures of quantum skyrmions
- URL: http://arxiv.org/abs/2506.16877v1
- Date: Fri, 20 Jun 2025 09:58:05 GMT
- Title: Optical signatures of quantum skyrmions
- Authors: Sanchar Sharma, Christina Psaroudaki,
- Abstract summary: We probe the quantum nature of skyrmions in frustrated magnets using Brillouin light scattering (BLS)<n>We show that, for a specific geometry, classical skyrmions produce symmetric sidebands in the BLS spectrum, whereas quantum skyrmions exhibit a distinct asymmetry arising from vacuum fluctuations of their rotation.<n>These findings establish a concrete protocol for the optical detection of non-classical features in spin textures, paving the way for exploring their role in quantum applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnets have recently emerged as promising candidates for quantum computing, particularly using topologically-protected nanoscale spin textures. While the quantum dynamics of such spin textures has been theoretically studied, direct experimental evidence of their non-classical behavior remains an open challenge. To address this, we propose to employ Brillouin light scattering (BLS) as a method to probe the quantum nature of skyrmions in frustrated magnets. We show that, for a specific geometry, classical skyrmions produce symmetric sidebands in the BLS spectrum, whereas quantum skyrmions exhibit a distinct asymmetry arising from vacuum fluctuations of their rotation. By studying the photon-skyrmion interaction, we calculate the BLS spectrum using a quantum master equation and show that sideband asymmetry serves as a robust witness of energy level quantization. We find that this asymmetry is pronounced at low temperatures, and can be controlled by input laser power. These findings establish a concrete protocol for the optical detection of non-classical features in spin textures, paving the way for exploring their role in quantum applications.
Related papers
- Protected quantum gates using qubit doublons in dynamical optical lattices [0.3387808070669509]
We show a purely geometric two-qubit swap gate by transiently populating qubit doublon states of fermionic atoms in a dynamical optical lattice.<n>The presence of these doublon states, together with fermionic exchange anti-symmetry, enables a two-particle quantum holonomy.<n>This work introduces a new paradigm for quantum logic, transforming fundamental symmetries and quantum statistics into a powerful resource for fault-tolerant computation.
arXiv Detail & Related papers (2025-07-29T18:00:00Z) - Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions [40.282478038074984]
Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number.
Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions.
This Colloquium considers quantum effects associated with skyrmion textures: their theoretical origins, the experimental and material challenges associated with their detection, and the promise of exploiting them for quantum operations.
arXiv Detail & Related papers (2024-10-15T09:27:20Z) - Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect [0.0]
Magnetic skyrmions are vortex-like quasiparticles characterized by long lifetime and remarkable topological properties.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements.
We show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
arXiv Detail & Related papers (2023-08-21T20:03:25Z) - Reconstruction of classical skyrmions from Anderson towers: quantum
Darwinism in action [0.0]
We show that the classical skyrmion spin order can be reconstructed using only the low-energy part of the spectrum of the corresponding quantum spin Hamiltonian.
The results allow us to take a fresh look at the problem of quantum antiferromagnetism.
arXiv Detail & Related papers (2022-10-08T05:23:39Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Quantum structured light: Non-classical spin texture of twisted
single-photon pulses [8.19841678851784]
A framework for the quantum density of spin and OAM for single-photons remains elusive.
We develop a theoretical framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level.
Our work paves the way for quantum spin-OAM physics in twisted single photon pulses.
arXiv Detail & Related papers (2021-02-26T01:08:57Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.