論文の概要: A Review of Latent Representation Models in Neuroimaging
- arxiv url: http://arxiv.org/abs/2412.19844v1
- Date: Tue, 24 Dec 2024 19:12:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:07:45.679839
- Title: A Review of Latent Representation Models in Neuroimaging
- Title(参考訳): ニューロイメージングにおける潜在表現モデルの検討
- Authors: C. Vázquez-García, F. J. Martínez-Murcia, F. Segovia Román, Juan M. Górriz,
- Abstract要約: ラテント表現モデルは、高次元のニューロイメージングデータを低次元のラテント空間に還元するように設計されている。
これらの潜伏空間をモデル化することで、研究者は脳の生物学と機能に関する洞察を得ることを望んでいる。
本総説では, 疾患診断や進行モニタリングなどの臨床応用だけでなく, 基礎的脳機構の解明にもこれらのモデルが用いられていることを論じる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neuroimaging data, particularly from techniques like MRI or PET, offer rich but complex information about brain structure and activity. To manage this complexity, latent representation models - such as Autoencoders, Generative Adversarial Networks (GANs), and Latent Diffusion Models (LDMs) - are increasingly applied. These models are designed to reduce high-dimensional neuroimaging data to lower-dimensional latent spaces, where key patterns and variations related to brain function can be identified. By modeling these latent spaces, researchers hope to gain insights into the biology and function of the brain, including how its structure changes with age or disease, or how it encodes sensory information, predicts and adapts to new inputs. This review discusses how these models are used for clinical applications, like disease diagnosis and progression monitoring, but also for exploring fundamental brain mechanisms such as active inference and predictive coding. These approaches provide a powerful tool for both understanding and simulating the brain's complex computational tasks, potentially advancing our knowledge of cognition, perception, and neural disorders.
- Abstract(参考訳): 神経画像データ、特にMRIやPETのような技術は、脳の構造や活動について豊富だが複雑な情報を提供する。
この複雑さを管理するために、自動エンコーダ、GAN(Generative Adversarial Networks)、LDM(Latent Diffusion Models)といった潜在表現モデルがますます適用されてきている。
これらのモデルは、高次元のニューロイメージングデータを低次元の潜在空間に還元するために設計されており、脳機能に関連する重要なパターンやバリエーションを識別することができる。
これらの潜伏空間をモデル化することによって、脳の構造が年齢や疾患によってどのように変化するか、感覚情報をエンコードし、新しい入力に適応するかなど、脳の生物学や機能に関する洞察を得ることを期待している。
本総説では, 疾患診断や進行モニタリングなどの臨床応用だけでなく, 能動推論や予測符号化などの基礎的脳機構の解明にも用いられている。
これらのアプローチは、脳の複雑な計算タスクを理解し、シミュレーションするための強力なツールを提供し、認知、知覚、神経障害に関する知識を前進させる可能性がある。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
本研究は,医療基盤モデルの創出に向けた新しいアプローチを紹介する。
本稿では,視覚変換器を用いた2段階事前学習手法を提案する。
BrainFounderは、これまでの勝利ソリューションの成果を上回る、大幅なパフォーマンス向上を実演している。
論文 参考訳(メタデータ) (2024-06-14T19:49:45Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。