論文の概要: MobileNetV2: A lightweight classification model for home-based sleep apnea screening
- arxiv url: http://arxiv.org/abs/2412.19967v1
- Date: Sat, 28 Dec 2024 01:37:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:02:01.279860
- Title: MobileNetV2: A lightweight classification model for home-based sleep apnea screening
- Title(参考訳): MobileNetV2:家庭型睡眠時無呼吸スクリーニングのための軽量分類モデル
- Authors: Hui Pan, Yanxuan Yu, Jilun Ye, Xu Zhang,
- Abstract要約: 本研究は、心電図(ECG)と呼吸信号から抽出した特徴を早期OSAスクリーニングに利用した、新しい軽量ニューラルネットワークモデルを提案する。
ECG信号は睡眠段階を予測するための特徴スペクトログラムを生成するのに使用され、呼吸信号は睡眠関連呼吸異常を検出するために用いられる。
これらの予測を統合することで、AHI(apnea-hypopnea index)を精度良く算出し、OSAの正確な診断を容易にする。
- 参考スコア(独自算出の注目度): 3.463585190363689
- License:
- Abstract: This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening. ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities. By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis. The method was validated on three publicly available sleep apnea databases: the Apnea-ECG database, the UCDDB dataset, and the MIT-BIH Polysomnographic database. Results showed an overall OSA detection accuracy of 0.978, highlighting the model's robustness. Respiratory event classification achieved an accuracy of 0.969 and an area under the receiver operating characteristic curve (ROC-AUC) of 0.98. For sleep stage classification, in UCDDB dataset, the ROC-AUC exceeded 0.85 across all stages, with recall for Sleep reaching 0.906 and specificity for REM and Wake states at 0.956 and 0.937, respectively. This study underscores the potential of integrating lightweight neural networks with multi-signal analysis for accurate, portable, and cost-effective OSA screening, paving the way for broader adoption in home-based and wearable health monitoring systems.
- Abstract(参考訳): 本研究は、心電図(ECG)と呼吸信号から抽出した特徴を早期OSAスクリーニングに利用した、新しい軽量ニューラルネットワークモデルを提案する。
ECG信号は睡眠段階を予測するための特徴スペクトログラムを生成するのに使用され、呼吸信号は睡眠関連呼吸異常を検出するために用いられる。
これらの予測を統合することで、AHI(apnea-hypopnea index)を精度良く算出し、OSAの正確な診断を容易にする。
この方法は、Apnea-ECGデータベース、UCDDBデータセット、MIT-BIH Polysomnographyデータベースの3つの公開睡眠時無呼吸データベースで検証された。
結果、OSA検出精度は0.978で、モデルの堅牢性を強調した。
呼吸事象分類の精度は0.969で、受信機動作特性曲線(ROC-AUC)は0.98である。
UCDDBデータセットでは、ROC-AUCは0.85を超え、Sleepは0.906、REMは0.956、Wakeは0.937となった。
この研究は、軽量ニューラルネットワークとマルチシグナル分析を統合して、正確でポータブルで費用対効果の高いOSAスクリーニングを実現する可能性を強調し、ホームベースおよびウェアラブルの健康モニタリングシステムに広く採用される道を開く。
関連論文リスト
- MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea
Classification [0.0]
睡眠時無呼吸症(SA)は、世界的な健康問題を引き起こす重要な呼吸器疾患である。
心電図(ECG)に基づくSA診断における,いくつかの機械学習モデルとディープラーニングモデルについて検討した。
本稿では,心電図信号の包括的セグメントを深く掘り下げることで,この診断ギャップに対処する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-11-25T14:39:12Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
本稿では,脳波以外の追加信号の利用の利便性について検討し,比較する。
最も優れたモデルである深部分離畳み込みニューラルネットワークのアンサンブルは86.06%の精度を達成した。
論文 参考訳(メタデータ) (2021-07-23T06:37:38Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - Sleep Apnea and Respiratory Anomaly Detection from a Wearable Band and
Oxygen Saturation [1.2291501047353484]
シンプルで使いやすいデバイスから睡眠時無呼吸を自動的に検出するより便利な方法のための一般的な医学とクリティカルケアの必要性があります。
本研究の目的は, 呼吸異常を自動検出し, Apnea-Hypopnea-Index (AHI) をウェアラブル呼吸装置で推定することである。
4つのモデルが訓練された:1つは呼吸機能のみを使用し、1つはSpO2(%)信号のみから、もう1つは呼吸機能とSpO2(%)機能を使用する2つの追加モデルである。
論文 参考訳(メタデータ) (2021-02-24T02:04:57Z) - Automated Respiratory Event Detection Using Deep Neural Networks [3.489191364043618]
閉塞性無呼吸, 中枢性無呼吸, 低呼吸, 呼吸障害関連興奮症を検知するために, 単一の呼吸運動ベルトに基づいてニューラルネットワークを訓練する。
呼吸イベントを完全自動検出し, 臨床応用に十分な精度で無呼吸ハイポネア指数を評価できる。
論文 参考訳(メタデータ) (2021-01-12T17:43:17Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Automatic scoring of apnea and hypopnea events using blood oxygen
saturation signals [0.0]
DAS-KSVDを用いて、睡眠健康研究データベースから得られた信号から無呼吸および低呼吸の事象を検出し分類した。
中等度から重度のOSAHスクリーニングでは、それぞれ0.957の曲線と87.56%と88.32%の診断感度と特異性を示す特性曲線解析を行う。
論文 参考訳(メタデータ) (2020-03-22T15:17:20Z) - Detection of Obstructive Sleep Apnoea Using Features Extracted from
Segmented Time-Series ECG Signals Using a One Dimensional Convolutional
Neural Network [0.19686770963118383]
本研究は,単チャンネル心電図(ECG)信号から得られた閉塞性睡眠時無呼吸症(OSA)の自動検出を目的とした1次元畳み込みニューラルネットワーク(1DCNN)モデルを提案する。
このモデルは、畳み込み、最大プール層と、隠蔽層とSoftMax出力からなる完全に接続された多層パーセプトロン(MLP)を用いて構成されている。
これは、モデルが高い精度でApnoeaの存在を識別できることを示している。
論文 参考訳(メタデータ) (2020-02-03T15:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。