論文の概要: LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2412.20227v2
- Date: Wed, 19 Mar 2025 15:56:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 17:45:40.741666
- Title: LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning
- Title(参考訳): LLM推論エンジン:強化数学的推論のための特別訓練
- Authors: Shuguang Chen, Guang Lin,
- Abstract要約: 数学的推論タスクにおける大規模言語モデルの能力を高めるための新しい手法を提案する。
このギャップを埋める必要性に感銘を受け、私たちのアプローチには質問パラフレーズ戦略が組み込まれています。
モデルの学習プロセスを導くために 専門的な訓練目的が 使われています。
- 参考スコア(独自算出の注目度): 7.512199306943756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable performance in various natural language processing tasks but face challenges in mathematical reasoning, where complex problem-solving requires both linguistic understanding and mathematical reasoning skills. Existing approaches to address this challenge often rely on ensemble methods and suffer from the problem of data scarcity in target domains. In this work, we present a novel method to enhance LLMs' capabilities in mathematical reasoning tasks. Motivated by the need to bridge this gap, our approach incorporates a question paraphrase strategy, which aims at diversifying the linguistic forms of mathematical questions to improve generalization. Additionally, specialized training objectives are employed to guide the model's learning process, focusing on enhancing its understanding of mathematical concepts and reasoning processes. We conduct experiments on four datasets using different LLMs, and demonstrate the effectiveness of our approach in improving LLMs' performance on mathematical reasoning tasks. Our findings underscore the significance of our methodology in the advancement of large language models and its potential implications for real-world applications that require mathematical reasoning abilities.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示してきたが、複雑な問題解決には、言語理解と数学的推論のスキルの両方を必要とする数学的推論の課題に直面している。
この課題に対処する既存のアプローチは、しばしばアンサンブルメソッドに依存し、ターゲットドメインにおけるデータ不足の問題に悩まされる。
本研究では,数学的推論タスクにおけるLLMの能力向上のための新しい手法を提案する。
このギャップを埋めることの必要性から,本手法では,言語形式の数学的質問を多様化し,一般化を改善することを目的とした質問パラフレーズ戦略を取り入れた。
さらに、モデルの学習プロセスのガイドとして、数学的概念や推論プロセスの理解を深めることに集中するために、専門的な訓練目的が採用されている。
異なるLLMを用いて4つのデータセット上で実験を行い、数学的推論タスクにおけるLLMの性能向上におけるアプローチの有効性を実証する。
本研究は,大規模言語モデルの発達における方法論の重要性と,数学的推論能力を必要とする実世界の応用の可能性を明らかにするものである。
関連論文リスト
- A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - Causality for Natural Language Processing [17.681875945732042]
因果推論は人間の知性の基礎であり、人工システムにとって重要な能力である。
この論文は、大きな言語モデルにおける因果推論と理解の様々な次元に展開する。
論文 参考訳(メタデータ) (2025-04-20T08:11:11Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
推論は人間の知性の中心であり、多様なタスクにまたがる構造化された問題解決を可能にする。
大規模言語モデル(LLM)の最近の進歩は、算術、常識、記号領域における推論能力を大幅に向上させてきた。
本稿では,テキストおよびマルチモーダルLLMにおける推論手法の簡潔かつ洞察に富んだ概要について述べる。
論文 参考訳(メタデータ) (2025-04-04T04:04:56Z) - A Survey on Mathematical Reasoning and Optimization with Large Language Models [0.5439020425819]
大規模言語モデル(LLM)の最近の進歩は、AIによる数学的推論、定理証明、最適化技術を大幅に改善している。
この調査は、AIにおける数学的問題解決の進化を、初期の統計的学習アプローチから近代的なディープラーニングやトランスフォーマーに基づく方法論まで調査する。
論文 参考訳(メタデータ) (2025-03-22T10:49:32Z) - Advancing Reasoning in Large Language Models: Promising Methods and Approaches [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて著しく成功している。
複雑な推論スパンニング論理推論、数学的問題解決、コモンセンス推論、そして多段階推論を実行する能力は、人間の期待に届かない。
本調査は, LLMにおける推論向上技術に関する総合的なレビューを提供する。
論文 参考訳(メタデータ) (2025-02-05T23:31:39Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - SAAS: Solving Ability Amplification Strategy for Enhanced Mathematical Reasoning in Large Language Models [4.090307917818891]
我々は,CoT(Chain-of-Thought)学習とPoT(Program-of-Thought)学習の統合に注力する。
本稿では,CoT学習からPoT学習へ戦略的に移行する,SAAS(Solving Ability Amplification Strategy)という逐次学習手法を提案する。
論文 参考訳(メタデータ) (2024-04-05T04:25:47Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。