Acquisition-Independent Deep Learning for Quantitative MRI Parameter Estimation using Neural Controlled Differential Equations
- URL: http://arxiv.org/abs/2412.20844v1
- Date: Mon, 30 Dec 2024 10:24:30 GMT
- Title: Acquisition-Independent Deep Learning for Quantitative MRI Parameter Estimation using Neural Controlled Differential Equations
- Authors: Daan Kuppens, Sebastiano Barbieri, Daisy van den Berg, Pepijn Schouten, Harriet C. Thoeny, Myrte Wennen, Oliver J. Gurney-Champion,
- Abstract summary: We show that NCDEs can function as a generic tool for the accurate prediction of QMRI parameters.
These findings suggest that NCDEs offer a robust approach for reliable QMRI parameter estimation.
- Score: 0.0
- License:
- Abstract: Deep learning has proven to be a suitable alternative to least-squares (LSQ) fitting for parameter estimation in various quantitative MRI (QMRI) models. However, current deep learning implementations are not robust to changes in MR acquisition protocols. In practice, QMRI acquisition protocols differ substantially between different studies and clinical settings. The lack of generalizability and adoptability of current deep learning approaches for QMRI parameter estimation impedes the implementation of these algorithms in clinical trials and clinical practice. Neural Controlled Differential Equations (NCDEs) allow for the sampling of incomplete and irregularly sampled data with variable length, making them ideal for use in QMRI parameter estimation. In this study, we show that NCDEs can function as a generic tool for the accurate prediction of QMRI parameters, regardless of QMRI sequence length, configuration of independent variables and QMRI forward model (variable flip angle T1-mapping, intravoxel incoherent motion MRI, dynamic contrast-enhanced MRI). NCDEs achieved lower mean squared error than LSQ fitting in low-SNR simulations and in vivo in challenging anatomical regions like the abdomen and leg, but this improvement was no longer evident at high SNR. NCDEs reduce estimation error interquartile range without increasing bias, particularly under conditions of high uncertainty. These findings suggest that NCDEs offer a robust approach for reliable QMRI parameter estimation, especially in scenarios with high uncertainty or low image quality. We believe that with NCDEs, we have solved one of the main challenges for using deep learning for QMRI parameter estimation in a broader clinical and research setting.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
We introduce and demonstrate a new paradigm for quantitative parameter mapping in MRI.
We propose a self-supervised deep variational approach that breaks the assumption of independent pixels.
Our approach can hence support the clinical adoption of parameter mapping methods such as dMRI and qMRI.
arXiv Detail & Related papers (2024-11-16T11:11:36Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
Quantitative MRI (qMRI) offers significant advantages over weighted images by providing objective parameters related to tissue properties.
Deep learning-based methods have demonstrated effectiveness in estimating quantitative maps from series of weighted images.
We present qMRI diffuser, a novel approach to qMRI utilising deep generative models.
arXiv Detail & Related papers (2024-07-23T13:49:19Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Robust MRI Reconstruction by Smoothed Unrolling (SMUG) [17.391075587858058]
We propose a novel image reconstruction framework, termed Smoothed Unrolling (SMUG)
SMUG advances a deep unrolling-based MRI reconstruction model using a randomized smoothing (RS)-based robust learning approach.
We show that SMUG improves the robustness of MRI reconstruction with respect to a diverse set of instability sources.
arXiv Detail & Related papers (2023-12-12T22:57:14Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
This study introduces a new algorithm called Predictor-Projector-Noisor (PPN), which enhances controllable generation of diffusion models for undersampled MRI reconstruction.
Our results demonstrate that PPN produces high-fidelity MR images that conform to undersampled k-space measurements with significantly shorter reconstruction time than other controllable sampling methods.
arXiv Detail & Related papers (2023-11-20T05:58:05Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
Learning-based deformable registration relies on weighted objective functions trading off registration accuracy and smoothness of the field.
We construct a registration model based on the gradient surgery mechanism, named GSMorph, to achieve a hyper parameter-free balance on multiple losses.
Our method is model-agnostic and can be merged into any deep registration network without introducing extra parameters or slowing down inference.
arXiv Detail & Related papers (2023-06-26T13:32:09Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.