論文の概要: HisynSeg: Weakly-Supervised Histopathological Image Segmentation via Image-Mixing Synthesis and Consistency Regularization
- arxiv url: http://arxiv.org/abs/2412.20924v1
- Date: Mon, 30 Dec 2024 13:10:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:07:04.815307
- Title: HisynSeg: Weakly-Supervised Histopathological Image Segmentation via Image-Mixing Synthesis and Consistency Regularization
- Title(参考訳): HisynSeg:画像ミキシング合成と一貫性規則化による病理組織像の断片化
- Authors: Zijie Fang, Yifeng Wang, Peizhang Xie, Zhi Wang, Yongbing Zhang,
- Abstract要約: HisynSegは画像混合合成と一貫性正規化に基づく弱教師付きセマンティックセマンティックセマンティクスフレームワークである。
HisynSegは3つのデータセット上で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 15.13875300007579
- License:
- Abstract: Tissue semantic segmentation is one of the key tasks in computational pathology. To avoid the expensive and laborious acquisition of pixel-level annotations, a wide range of studies attempt to adopt the class activation map (CAM), a weakly-supervised learning scheme, to achieve pixel-level tissue segmentation. However, CAM-based methods are prone to suffer from under-activation and over-activation issues, leading to poor segmentation performance. To address this problem, we propose a novel weakly-supervised semantic segmentation framework for histopathological images based on image-mixing synthesis and consistency regularization, dubbed HisynSeg. Specifically, synthesized histopathological images with pixel-level masks are generated for fully-supervised model training, where two synthesis strategies are proposed based on Mosaic transformation and B\'ezier mask generation. Besides, an image filtering module is developed to guarantee the authenticity of the synthesized images. In order to further avoid the model overfitting to the occasional synthesis artifacts, we additionally propose a novel self-supervised consistency regularization, which enables the real images without segmentation masks to supervise the training of the segmentation model. By integrating the proposed techniques, the HisynSeg framework successfully transforms the weakly-supervised semantic segmentation problem into a fully-supervised one, greatly improving the segmentation accuracy. Experimental results on three datasets prove that the proposed method achieves a state-of-the-art performance. Code is available at https://github.com/Vison307/HisynSeg.
- Abstract(参考訳): 組織的セグメンテーションは、計算病理学における重要なタスクの1つである。
ピクセルレベルのアノテーションの高価な取得を避けるため、クラスアクティベーションマップ(CAM)を弱教師付き学習方式で導入し、ピクセルレベルの組織セグメンテーションを実現する。
しかし、CAMベースの手法は、過剰な活性化と過剰な活性化の問題に悩まされがちであり、セグメンテーション性能は低下する。
この問題を解決するために,HiynSegと呼ばれる画像混合合成と整合性正規化に基づく病理画像の弱教師付きセマンティックセマンティックセマンティックセマンティクスフレームワークを提案する。
具体的には,モザイク変換とB'ezierマスク生成に基づく2つの合成戦略を提案する。
また、合成画像の信頼性を保証するために、画像フィルタリングモジュールを開発する。
時折合成アーティファクトに過度に適合するモデルを回避するため,セグメント化マスクを使わずに実際の画像がセグメント化モデルの訓練を監督できる,自己教師付き整合正則化を新たに提案する。
提案手法を統合することで、HiynSegフレームワークは弱教師付きセマンティックセマンティックセマンティクス問題を完全教師付きセマンティクスに変換し、セマンティクスの精度を大幅に向上させる。
3つのデータセットに対する実験結果から,提案手法が最先端の性能を達成できることが証明された。
コードはhttps://github.com/Vison307/HisynSegで入手できる。
関連論文リスト
- Adaptive Noise-Tolerant Network for Image Segmentation [1.57731592348751]
そこで本研究では,非完全・ノイズセグメンテーションとオフザシェルフセグメンテーションアルゴリズムを組み合わせることで,適応型ノイズ耐性ネットワーク(ANTN)モデルにより,より優れたセグメンテーション結果が得られるかどうかを考察する。
1)複数のノイズラベルを1つのディープラーニングモデルに統合できる,(2)確率的パラメータを含む雑音分割モデリングは、与えられたテスト画像の外観に応じて適応する,という2つの新しい側面で、ノイズラベルのディープラーニングを画像セグメンテーションに拡張する。
論文 参考訳(メタデータ) (2025-01-13T09:49:34Z) - MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner
for Open-World Semantic Segmentation [110.09800389100599]
セマンティックセグメンテーションのための新鮮で簡単な事前学習パラダイムであるMixReorgを提案する。
我々のアプローチは、パッチとテキストの対応を保ちながら、画像パッチを混合することで、きめ細かいパッチテキストペアデータを生成することである。
マスク学習者としてMixReorgを使用することで、従来のテキスト教師付きセマンティックセマンティックセマンティックモデルは、非常に一般化可能なピクセル・セマンティックアライメントを実現することができる。
論文 参考訳(メタデータ) (2023-08-09T09:35:16Z) - Cross-modal tumor segmentation using generative blending augmentation and self training [1.6440045168835438]
本稿では,新しいデータ拡張手法によって強化された従来の画像合成に基づくクロスモーダルセグメンテーション手法を提案する。
Generative Blending Augmentation (GBA)は、単一のトレーニング画像から代表的生成特徴を学習し、腫瘍の外観を現実的に多様化させる。
提案手法は,MICCAI CrossMoDA 2022 チャレンジの検証および試験段階において,前庭神経ショーノマ(VS)セグメンテーションにおいて第1位となった。
論文 参考訳(メタデータ) (2023-04-04T11:01:46Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Contrastive Image Synthesis and Self-supervised Feature Adaptation for
Cross-Modality Biomedical Image Segmentation [8.772764547425291]
CISFAは、画像ドメインの翻訳と、クロスモーダルなバイオメディカルなイメージセグメンテーションのための教師なしの機能適応に基づいている。
我々は,片側生成モデルを用いて,入力画像のサンプルパッチと対応する合成画像との重み付けパッチワイドコントラスト損失を付加する。
腹腔・全心に対するCTおよびMRI画像を含むセグメンテーションタスクについて検討した。
論文 参考訳(メタデータ) (2022-07-27T01:49:26Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
そこで本研究では,PCaの病理組織像に対して,異なる疾患ラベル間の幾何学的関係を学習して合成する方法を提案する。
我々はGleasonスコアを用いた弱教師付きセグメンテーション手法を用いて、疾患領域をセグメンテーションする。
得られたセグメンテーションマップは、行方不明のマスクセグメントを予測するためにShaRe-Net(ShaRe-Net)をトレーニングするために使用される。
論文 参考訳(メタデータ) (2021-10-01T13:47:07Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Synthetic Convolutional Features for Improved Semantic Segmentation [139.5772851285601]
本稿では、中間畳み込み特徴を生成することを提案し、そのような中間畳み込み特徴に対応する最初の合成手法を提案する。
これにより、ラベルマスクから新機能を生成し、トレーニング手順にうまく組み込むことができます。
Cityscapes と ADE20K の2つの挑戦的なデータセットに関する実験結果と分析により,生成した特徴がセグメンテーションタスクのパフォーマンスを向上させることが示された。
論文 参考訳(メタデータ) (2020-09-18T14:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。