論文の概要: Efficient Estimation and Sequential Optimization of Cost Functions in Variational Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2412.20972v1
- Date: Mon, 30 Dec 2024 14:24:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:41.585854
- Title: Efficient Estimation and Sequential Optimization of Cost Functions in Variational Quantum Algorithms
- Title(参考訳): 変分量子アルゴリズムにおけるコスト関数の効率的な推定と逐次最適化
- Authors: Muhammad Umer, Eleftherios Mastorakis, Dimitris G. Angelakis,
- Abstract要約: 本稿では,パラメータ化量子回路を異なるユニタリ演算子の重み付け和として概念化する新しい最適化手法を提案する。
この表現は、コスト関数の非局所的特性とその任意の微分の効率的な評価を促進する。
従来の最適化手法と比較して,収束速度と精度が大幅に向上した。
- 参考スコア(独自算出の注目度): 1.4981317129908267
- License:
- Abstract: Classical optimization is a cornerstone of the success of variational quantum algorithms, which often require determining the derivatives of the cost function relative to variational parameters. The computation of the cost function and its derivatives, coupled with their effective utilization, facilitates faster convergence by enabling smooth navigation through complex landscapes, ensuring the algorithm's success in addressing challenging variational problems. In this work, we introduce a novel optimization methodology that conceptualizes the parameterized quantum circuit as a weighted sum of distinct unitary operators, enabling the cost function to be expressed as a sum of multiple terms. This representation facilitates the efficient evaluation of nonlocal characteristics of cost functions, as well as their arbitrary derivatives. The optimization protocol then utilizes the nonlocal information on the cost function to facilitate a more efficient navigation process, ultimately enhancing the performance in the pursuit of optimal solutions. We utilize this methodology for two distinct cost functions. The first is the squared residual of the variational state relative to a target state, which is subsequently employed to examine the nonlinear dynamics of fluid configurations governed by the one-dimensional Burgers' equation. The second cost function is the expectation value of an observable, which is later utilized to approximate the ground state of the nonlinear Schr\"{o}dinger equation. Our findings reveal substantial enhancements in convergence speed and accuracy relative to traditional optimization methods, even within complex, high-dimensional landscapes. Our work contributes to the advancement of optimization strategies for variational quantum algorithms, establishing a robust framework for addressing a range of computationally intensive problems across numerous applications.
- Abstract(参考訳): 古典最適化は変動量子アルゴリズムの成功の基盤であり、しばしば変動パラメータに対するコスト関数の微分を決定する必要がある。
コスト関数とその導関数の計算は、その有効利用と相まって、複雑な風景のスムーズなナビゲーションを可能にし、アルゴリズムが挑戦的な変動問題に対処する成功を確実にすることで、より高速な収束を促進する。
本研究では,パラメータ化量子回路を異なるユニタリ演算子の重み付け和として概念化し,コスト関数を複数の項の和として表現する新しい最適化手法を提案する。
この表現は、コスト関数の非局所的特性とその任意の微分の効率的な評価を促進する。
最適化プロトコルは、コスト関数の非局所情報を利用して、より効率的なナビゲーションプロセスを容易にし、最終的には最適解の追求における性能を向上する。
この手法を2つの異なるコスト関数に応用する。
1つは、ターゲット状態に対する変分状態の2乗残差であり、その後、1次元バーガーズ方程式によって支配される流体構成の非線形ダイナミクスを調べるために用いられる。
第2のコスト関数は観測可能量の期待値であり、後に非線形シュルンディンガー方程式の基底状態を近似するために使われる。
その結果, 複雑な高次元景観においても, 従来の最適化手法と比較して収束速度と精度が著しく向上していることが判明した。
我々の研究は、変分量子アルゴリズムの最適化戦略の進歩に寄与し、多くのアプリケーションにまたがる様々な計算集約的な問題に対処するための堅牢な枠組みを確立した。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Variational quantum algorithm for enhanced continuous variable optical
phase sensing [0.0]
変分量子アルゴリズム(VQA)は、ノイズ量子デバイスにおける幅広い問題に対処するために用いられるハイブリッド量子古典的アプローチである。
本研究では, 連続変数プラットフォーム上でのパラメータ推定の最適化のために, 圧縮光に基づく変分アルゴリズムを実装した。
論文 参考訳(メタデータ) (2023-12-21T14:11:05Z) - Landscape-Sketch-Step: An AI/ML-Based Metaheuristic for Surrogate
Optimization Problems [0.0]
コスト関数の広範囲な評価が高価で、アクセス不能、あるいは禁止されるシナリオにおいて、グローバルな最適化のための新しいアルゴリズムを導入する。
この手法はLandscape-Sketch-and-Step (LSS)と呼ばれ、機械学習、レプリカ最適化、強化学習技術を組み合わせたものである。
論文 参考訳(メタデータ) (2023-09-14T01:53:45Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
量子近似最適化アルゴリズム(QAOA)は、目的最適化問題の解法として設計されている。
その結果,アルゴリズムは速度,精度,効率,安定性の点で従来の近似よりも大幅に優れていた。
この研究はQAOAの全パワーを解き放つのに役立ち、実践的な古典的なタスクにおいて量子的優位性を達成するための道を開く。
論文 参考訳(メタデータ) (2023-03-27T02:14:56Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Using models to improve optimizers for variational quantum algorithms [1.7475326826331605]
変分量子アルゴリズムは、ノイズの多い中間スケール量子コンピュータの初期応用の第一候補である。
これらのアルゴリズムは、パラメータ化量子回路の機能を最小化する古典的な最適化外ループに依存している。
本稿では,2つの最適化手法を導入し,その性能を今日の一般的な手法と数値的に比較する。
論文 参考訳(メタデータ) (2020-05-22T05:23:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。