論文の概要: Quantum Diffusion Model for Quark and Gluon Jet Generation
- arxiv url: http://arxiv.org/abs/2412.21082v1
- Date: Mon, 30 Dec 2024 17:00:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:46.770228
- Title: Quantum Diffusion Model for Quark and Gluon Jet Generation
- Title(参考訳): クォークおよびグルーオンジェット発生のための量子拡散モデル
- Authors: Mariia Baidachna, Rey Guadarrama, Gopal Ramesh Dahale, Tom Magorsch, Isabel Pedraza, Konstantin T. Matchev, Katia Matcheva, Kyoungchul Kong, Sergei Gleyzer,
- Abstract要約: 量子コンピューティング技術の恩恵を受ける新しい拡散モデルを導入する。
我々は大型ハドロン衝突型加速器から構造的に複雑なクォークとグルーオンジェットのデータセットの評価を行った。
- 参考スコア(独自算出の注目度): 3.129585931342323
- License:
- Abstract: Diffusion models have demonstrated remarkable success in image generation, but they are computationally intensive and time-consuming to train. In this paper, we introduce a novel diffusion model that benefits from quantum computing techniques in order to mitigate computational challenges and enhance generative performance within high energy physics data. The fully quantum diffusion model replaces Gaussian noise with random unitary matrices in the forward process and incorporates a variational quantum circuit within the U-Net in the denoising architecture. We run evaluations on the structurally complex quark and gluon jets dataset from the Large Hadron Collider. The results demonstrate that the fully quantum and hybrid models are competitive with a similar classical model for jet generation, highlighting the potential of using quantum techniques for machine learning problems.
- Abstract(参考訳): 拡散モデルは画像生成において顕著に成功したが、それらは計算集約的で訓練に時間がかかる。
本稿では,計算課題を緩和し,高エネルギー物理データにおける生成性能を向上させるために,量子コンピューティング技術を利用した新しい拡散モデルを提案する。
完全量子拡散モデルは、前処理でガウスノイズをランダムなユニタリ行列に置き換え、U-Net内に変分量子回路を組み込む。
我々は大型ハドロン衝突型加速器から構造的に複雑なクォークとグルーオンジェットのデータセットの評価を行った。
その結果、完全量子モデルとハイブリッドモデルがジェット生成の古典モデルと競合していることが示され、機械学習問題に量子技術を使うことの可能性が浮き彫りになった。
関連論文リスト
- A Novel Quantum Realization of Jet Clustering in High-Energy Physics Experiments [8.841173525787223]
高エネルギー粒子衝突ではクォークとグルーオンが生成され、すぐにジェットとして知られる衝突粒子噴霧を形成する。
正確なジェット・クラスタリングは、起源のクォークやグルーオンの情報を保持するために重要である。
この研究は、ジェットクラスタリングに革命をもたらす量子コンピューティングの可能性を強調した。
論文 参考訳(メタデータ) (2024-07-12T07:26:22Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Quantum Denoising Diffusion Models [4.763438526927999]
2つの量子拡散モデルを導入し、それらの能力と古典的能力とをベンチマークする。
我々のモデルは、FID、SSIM、PSNRのパフォーマンス指標の点で、類似したパラメータ数を持つ古典モデルを上回る。
論文 参考訳(メタデータ) (2024-01-13T11:38:08Z) - Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
実量子システムで実験的に検証できる3つの量子ノイズ駆動生成拡散モデルを提案する。
アイデアは、特にコヒーレンス、絡み合い、ノイズの間の非自明な相互作用を、ユニークな量子的特徴を活用することである。
我々の結果は、新しい量子インスパイアされた、あるいは量子ベースの生成拡散アルゴリズムの道を開くことが期待されている。
論文 参考訳(メタデータ) (2023-08-23T09:09:32Z) - Precise Image Generation on Current Noisy Quantum Computing Devices [0.0]
量子アングルジェネレータ(QAG)は、現在のノイズ中間スケール(NISQ)量子デバイス上で正確な画像を生成するために設計された、新しいフル量子機械学習モデルである。
変動量子回路はQAGモデルのコアを形成し、様々な回路アーキテクチャを評価する。
実演では、このモデルは粒子エネルギーを測定するのに必要な高エネルギー物理学において必要不可欠なシミュレーションに使用される。
論文 参考訳(メタデータ) (2023-07-11T13:36:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。