Quantum Diffusion Model for Quark and Gluon Jet Generation
- URL: http://arxiv.org/abs/2412.21082v1
- Date: Mon, 30 Dec 2024 17:00:54 GMT
- Title: Quantum Diffusion Model for Quark and Gluon Jet Generation
- Authors: Mariia Baidachna, Rey Guadarrama, Gopal Ramesh Dahale, Tom Magorsch, Isabel Pedraza, Konstantin T. Matchev, Katia Matcheva, Kyoungchul Kong, Sergei Gleyzer,
- Abstract summary: We introduce a novel diffusion model that benefits from quantum computing techniques.
We run evaluations on the structurally complex quark and gluon jets dataset from the Large Hadron Collider.
- Score: 3.129585931342323
- License:
- Abstract: Diffusion models have demonstrated remarkable success in image generation, but they are computationally intensive and time-consuming to train. In this paper, we introduce a novel diffusion model that benefits from quantum computing techniques in order to mitigate computational challenges and enhance generative performance within high energy physics data. The fully quantum diffusion model replaces Gaussian noise with random unitary matrices in the forward process and incorporates a variational quantum circuit within the U-Net in the denoising architecture. We run evaluations on the structurally complex quark and gluon jets dataset from the Large Hadron Collider. The results demonstrate that the fully quantum and hybrid models are competitive with a similar classical model for jet generation, highlighting the potential of using quantum techniques for machine learning problems.
Related papers
- Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.
This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.
The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - A Novel Quantum Realization of Jet Clustering in High-Energy Physics Experiments [8.841173525787223]
In high-energy particle collisions, quarks and gluons are produced and immediately form collimated particle sprays known as jets.
Accurate jet clustering is crucial as it retains the information of the originating quark or gluon.
This study highlights the feasibility of quantum computing to revolutionize jet clustering.
arXiv Detail & Related papers (2024-07-12T07:26:22Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
We propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits.
We test our model on the image generation problem.
Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr'echet distance (FID) score.
arXiv Detail & Related papers (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Quantum Denoising Diffusion Models [4.763438526927999]
We introduce two quantum diffusion models and benchmark their capabilities against their classical counterparts.
Our models surpass the classical models with similar parameter counts in terms of performance metrics FID, SSIM, and PSNR.
arXiv Detail & Related papers (2024-01-13T11:38:08Z) - Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
We propose three quantum-noise-driven generative diffusion models that could be experimentally tested on real quantum systems.
The idea is to harness unique quantum features, in particular the non-trivial interplay among coherence, entanglement and noise.
Our results are expected to pave the way for new quantum-inspired or quantum-based generative diffusion algorithms.
arXiv Detail & Related papers (2023-08-23T09:09:32Z) - Precise Image Generation on Current Noisy Quantum Computing Devices [0.0]
The Quantum Angle Generator (QAG) is a new full Quantum Machine Learning model designed to generate accurate images on current Noise Intermediate Scale (NISQ) Quantum devices.
Variational quantum circuits form the core of the QAG model, and various circuit architectures are evaluated.
For demonstration, the model is employed in indispensable simulations in high energy physics required to measure particle energies.
arXiv Detail & Related papers (2023-07-11T13:36:05Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.