論文の概要: Quantum Error Correction near the Coding Theoretical Bound
- arxiv url: http://arxiv.org/abs/2412.21171v3
- Date: Thu, 03 Jul 2025 17:36:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-05 00:08:20.85631
- Title: Quantum Error Correction near the Coding Theoretical Bound
- Title(参考訳): 符号化理論境界近傍の量子誤差補正
- Authors: Daiki Komoto, Kenta Kasai,
- Abstract要約: 量子誤り訂正符号を効率よく復号する。
このブレークスルーは、大規模でフォールトトレラントな量子計算の道を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in quantum computing has enabled systems with tens of reliable logical qubits, built from thousands of noisy physical qubits. However, many impactful applications demand quantum computations with millions of logical qubits, necessitating highly scalable quantum error correction. In classical information theory, low-density parity-check (LDPC) codes can approach channel capacity efficiently. Yet, no quantum error-correcting codes with efficient decoding have been shown to approach the hashing bound - a fundamental limit on quantum capacity - despite decades of research. Here, we present quantum LDPC codes that not only approach the hashing bound but also allow decoding with computational cost linear in the number of physical qubits. This breakthrough paves the way for large-scale, fault-tolerant quantum computation. Combined with emerging hardware that manages many qubits, our approach brings quantum solutions to important real-world problems significantly closer to reality.
- Abstract(参考訳): 量子コンピューティングの最近の進歩により、何千ものノイズの多い物理量子ビットから構築された、数十の信頼できる論理量子ビットを持つシステムが実現された。
しかし、多くの影響のあるアプリケーションは数百万の論理量子ビットを持つ量子計算を必要とし、高度にスケーラブルな量子エラー補正を必要とする。
古典情報理論では、低密度パリティチェック(LDPC)符号はチャネル容量に効率的にアプローチすることができる。
しかし、数十年の研究にもかかわらず、効率的な復号化を伴う量子エラー訂正符号は、量子容量の基本的な制限であるハッシュ境界に近づくことが示されている。
ここでは、ハッシュ境界に近づくだけでなく、物理量子ビット数の線形計算コストで復号できる量子LDPC符号を提案する。
このブレークスルーは、大規模でフォールトトレラントな量子計算の道を開く。
多くの量子ビットを管理する新しいハードウェアと組み合わせることで、我々のアプローチは、重要な現実世界の問題に量子ソリューションをもたらす。
関連論文リスト
- Error correction of a logical qubit encoded in a single atomic ion [0.0]
量子誤り訂正(QEC)は、量子コンピュータが有用なアルゴリズムを実行するために不可欠である。
近年の研究では、単一粒子レベルで誤り訂正を行うための補完的なアプローチが提案されている。
ここでは、QECを単一原子イオンで示し、最大2.2倍の誤差を減少させ、量子ビットの有用な寿命を最大1.5倍に拡張する。
論文 参考訳(メタデータ) (2025-03-18T05:10:21Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
スケーラブルでプログラム可能な量子コンピュータは、コンピュータが合理的な時間枠で達成できない計算集約的なタスクを解く可能性を持ち、量子優位性を達成する。
現在の量子プロセッサのエラーに対する脆弱性は、実用的な問題に必要な複雑で深い量子回路の実行に重大な課題をもたらす。
我々の研究は、現在の世代の量子ハードウェアを用いた超伝導体ベースのプロセッサにおいて、論理的CNOTゲートとエラー検出を併用できる可能性を確立した。
論文 参考訳(メタデータ) (2024-06-18T04:50:15Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
本稿では,従来の手法に比べてレイテンシの低い量子同値チェック手法QuBECを提案する。
提案手法は,ベンチマーク回路の検証時間を最大271.49倍に短縮する。
論文 参考訳(メタデータ) (2023-09-19T16:12:37Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Low-overhead quantum error correction codes with a cyclic topology [0.0]
本稿では,リングアーキテクチャ上での小さな距離に対する循環安定化器を用いた5ビット完全符号の資源効率のスケーリングを提案する。
非隣り合うデータ量子ビットに絡み合ったアンシラを持つ補正符号の量子回路を構築する方法を示す。
論文 参考訳(メタデータ) (2022-11-06T12:22:23Z) - Error Correction for Reliable Quantum Computing [0.0]
本稿では、縮退と呼ばれる量子パラダイムに特有な現象とそのスパース量子符号の性能への影響について研究する。
本稿では,様々なシナリオにおいて,スパース量子符号の特定の族の性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2022-02-17T11:26:52Z) - Quantum Error Correction with Quantum Autoencoders [0.0]
量子ニューラルネットワークをトレーニングして,能動的検出と誤り訂正のための最適な戦略を学習する方法を示す。
量子オートエンコーダの復号化能力は、特定の状態の保護に限らず、論理的コード空間全体に拡張されることを強調した。
論文 参考訳(メタデータ) (2022-02-01T16:55:14Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。