論文の概要: DDD-GenDT: Dynamic Data-driven Generative Digital Twin Framework
- arxiv url: http://arxiv.org/abs/2501.00051v1
- Date: Sat, 28 Dec 2024 01:13:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 20:43:30.083743
- Title: DDD-GenDT: Dynamic Data-driven Generative Digital Twin Framework
- Title(参考訳): DDD-GenDT: 動的データ駆動型生成デジタルツインフレームワーク
- Authors: Yu-Zheng Lin, Qinxuan Shi, Zhanglong Yang, Banafsheh Saber Latibari, Sicong Shao, Soheil Salehi, Pratik Satam,
- Abstract要約: デジタルツイン(DT)技術は、物理システムの振る舞いをシミュレートし、予測し、最適化するためのトランスフォーメーションアプローチとして登場した。
本稿では、動的データ駆動型アプリケーションシステム(DDDAS)にインスパイアされた、デジタルツインツフレームワーク(DDD-GenDT)の動的データ駆動型生成手法を提案する。
本研究では, コンピュータ数値制御(CNC)加工プロセスにDDD-GenDTを適用し, NASAのミリング摩耗データセットにおけるスピンドル電流測定データを例として用いた。
- 参考スコア(独自算出の注目度): 0.4498483767417395
- License:
- Abstract: Digital twin (DT) technology has emerged as a transformative approach to simulate, predict, and optimize the behavior of physical systems, with applications that span manufacturing, healthcare, climate science, and more. However, the development of DT models often faces challenges such as high data requirements, integration complexity, and limited adaptability to dynamic changes in physical systems. This paper presents a new method inspired by dynamic data-driven applications systems (DDDAS), called the dynamic data-driven generative of digital twins framework (DDD-GenDT), which combines the physical system with LLM, allowing LLM to act as DT to interact with the physical system operating status and generate the corresponding physical behaviors. We apply DDD-GenDT to the computer numerical control (CNC) machining process, and we use the spindle current measurement data in the NASA milling wear data set as an example to enable LLMs to forecast the physical behavior from historical data and interact with current observations. Experimental results show that in the zero-shot prediction setting, the LLM-based DT can adapt to the change in the system, and the average RMSE of the GPT-4 prediction is 0.479A, which is 4.79% of the maximum spindle motor current measurement of 10A, with little training data and instructions required. Furthermore, we analyze the performance of DDD-GenDT in this specific application and their potential to construct digital twins. We also discuss the limitations and challenges that may arise in practical implementations.
- Abstract(参考訳): デジタルツイン(DT)技術は、物理的システムの振る舞いをシミュレートし、予測し、最適化するための変革的アプローチとして、製造業、医療、気候科学などにまたがる応用として登場した。
しかし、DTモデルの開発は、高いデータ要求、統合の複雑さ、物理的システムの動的変化への適応性の制限といった課題に直面していることが多い。
本稿では、動的データ駆動型アプリケーションシステム(DDDAS)に触発された新しい手法について述べる。この手法は、物理系とLCMを組み合わせた動的データ駆動型デジタルツインツフレームワーク(DDD-GenDT)の動的データ駆動型生成であり、LCMがDTとして動作し、物理系動作状態と相互作用し、対応する物理挙動を生成する。
コンピュータ数値制御(CNC)加工プロセスにDDD-GenDTを適用し,その例として,NASAのミリング摩耗データセットのスピンドル電流測定データを用いて,LLMが過去のデータから物理挙動を予測し,現在の観測と相互作用できるようにする。
実験の結果、ゼロショット予測設定では、LDMベースのDTはシステムの変化に適応でき、GPT-4予測の平均RMSEは0.479Aであり、これは10Aの最大スピンドルモータ電流測定の4.79%であり、訓練データや指示は少ない。
さらに、この特定のアプリケーションにおけるDDD-GenDTの性能とデジタルツインの構築の可能性を分析する。
また,実践的に発生するであろう限界や課題についても論じる。
関連論文リスト
- Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network [0.0]
本稿では,動的生成条件付きGAN(Dyn-cGAN)を代理モデルとして,パラメータ化非線形流体力学系を正確に予測する。
学習したDyn-cGANモデルはシステムの流れ場を正確に予測するためにシステムパラメータを考慮に入れている。
論文 参考訳(メタデータ) (2024-12-23T20:50:20Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することにより、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
GenAIはDTの構築と更新を推進し、予測精度を改善し、多様なスマート製造に備える。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Constructing and Evaluating Digital Twins: An Intelligent Framework for DT Development [11.40908718824589]
デジタルツインズ(DT)の開発は、制御されたデジタル空間における複雑なシステムをシミュレートし最適化するための変革的な進歩を表している。
本稿では,アルゴリズム性能試験におけるDTの精度と有用性を高めるために,DTの構築と評価のためのインテリジェントなフレームワークを提案する。
本稿では,Deep Learning-based policy gradient techniqueを統合してDTパラメータを動的に調整し,物理システムのデジタル複製における高い忠実性を確保する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T01:45:18Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Image-based Deep Learning for Smart Digital Twins: a Review [0.0]
スマートデジタルツイン(SDT)は、複雑な物理的システムの振る舞いを仮想的に再現し、予測するためにますます利用されている。
ディープラーニング(DL)モデルは、SDTの機能を大幅に強化した。
本稿では,画像ベースSDTの開発における様々なアプローチと課題について論じる。
論文 参考訳(メタデータ) (2024-01-04T20:17:25Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Through-life Monitoring of Resource-constrained Systems and Fleets [0.0]
デジタルツイン(Digital Twin、DT)は、経済、社会的、商業的な価値を付加する決定を行うための情報を提供する物理システムのシミュレーションである。
リソース制約のあるシステムでは、オンボード学習やオフボードデータ転送といった課題のため、DTの更新は簡単ではない。
本稿では,システムヘルスモニタリングを目的とした資源制約付きシステムのデータ駆動型DTを更新するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-03T09:26:18Z) - Meta-Learning of Neural State-Space Models Using Data From Similar
Systems [11.206109495578705]
本稿では,深層エンコーダネットワークを用いたSSM構築のためのモデルに依存しないメタラーニングを提案する。
メタラーニングは教師付き学習や伝達学習よりも正確な神経SSMモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-11-14T22:03:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。