論文の概要: Human-Centered Design for AI-based Automatically Generated Assessment Reports: A Systematic Review
- arxiv url: http://arxiv.org/abs/2501.00081v1
- Date: Mon, 30 Dec 2024 16:20:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:01.860582
- Title: Human-Centered Design for AI-based Automatically Generated Assessment Reports: A Systematic Review
- Title(参考訳): AIに基づく自動生成評価レポートのための人間中心設計:システムレビュー
- Authors: Ehsan Latif, Ying Chen, Xiaoming Zhai, Yue Yin,
- Abstract要約: 本研究は,ユーザ中心・直感的デザインによる教師の認知的要求を減らすことの重要性を強調した。
テキスト、視覚支援、プロットなどの多様な情報提示フォーマットや、ユーザビリティを高めるためのライブやインタラクティブ機能などの高度な機能の可能性を強調します。
このフレームワークは、教師が技術強化された評価結果に取り組み、データ駆動による意思決定を容易にし、教育と学習プロセスを改善するためのパーソナライズされたフィードバックを提供することの課題に対処することを目的としている。
- 参考スコア(独自算出の注目度): 4.974197456441281
- License:
- Abstract: This paper provides a comprehensive review of the design and implementation of automatically generated assessment reports (AutoRs) for formative use in K-12 Science, Technology, Engineering, and Mathematics (STEM) classrooms. With the increasing adoption of technology-enhanced assessments, there is a critical need for human-computer interactive tools that efficiently support the interpretation and application of assessment data by teachers. AutoRs are designed to provide synthesized, interpretable, and actionable insights into students' performance, learning progress, and areas for improvement. Guided by cognitive load theory, this study emphasizes the importance of reducing teachers' cognitive demands through user-centered and intuitive designs. It highlights the potential of diverse information presentation formats such as text, visual aids, and plots and advanced functionalities such as live and interactive features to enhance usability. However, the findings also reveal that many existing AutoRs fail to fully utilize these approaches, leading to high initial cognitive demands and limited engagement. This paper proposes a conceptual framework to inform the design, implementation, and evaluation of AutoRs, balancing the trade-offs between usability and functionality. The framework aims to address challenges in engaging teachers with technology-enhanced assessment results, facilitating data-driven decision-making, and providing personalized feedback to improve the teaching and learning process.
- Abstract(参考訳): 本稿では,K-12理科,工学,数学(STEM)教室において,自動生成アセスメントレポート(AutoR)の設計と実装について概説する。
技術強化アセスメントの導入が進み、教師によるアセスメントデータの解釈と適用を効率的に支援する人間とコンピュータの対話ツールが不可欠である。
AutoRは、生徒のパフォーマンス、学習の進捗、改善のための領域に関する、合成され、解釈可能で、実行可能な洞察を提供するように設計されている。
認知負荷理論によって導かれた本研究は,ユーザ中心・直感的なデザインを通じて,教師の認知的要求を減らすことの重要性を強調した。
テキスト、視覚支援、プロットなどの多様な情報提示フォーマットや、ユーザビリティを高めるためのライブやインタラクティブ機能などの高度な機能の可能性を強調します。
しかし、多くの既存のAutoRがこれらのアプローチを完全に活用できず、高い認知的要求と限られたエンゲージメントに繋がることが明らかとなった。
本稿では,AutoRの設計,実装,評価について,ユーザビリティと機能間のトレードオフのバランスをとる概念的枠組みを提案する。
このフレームワークは、教師が技術強化された評価結果に取り組み、データ駆動による意思決定を容易にし、教育と学習プロセスを改善するためのパーソナライズされたフィードバックを提供することの課題に対処することを目的としている。
関連論文リスト
- Personalised Feedback Framework for Online Education Programmes Using Generative AI [0.0]
本稿では,埋め込みを組み込むことでChatGPTの機能を拡張したフィードバックフレームワークを提案する。
本研究の一環として,オープンエンドおよび複数選択質問に対する有効率90%と100%を達成できる概念解の証明を提案し,開発した。
論文 参考訳(メタデータ) (2024-10-14T22:35:40Z) - AERA Chat: An Interactive Platform for Automated Explainable Student Answer Assessment [12.970776782360366]
AERA Chatは、学生の回答の視覚的に説明された評価を提供するインタラクティブなプラットフォームである。
ユーザーは質問や学生の回答を入力して、大規模言語モデルから自動で説明可能な評価結果を得ることができる。
論文 参考訳(メタデータ) (2024-10-12T11:57:53Z) - Improving the Validity of Automatically Generated Feedback via Reinforcement Learning [46.667783153759636]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - Lessons Learned from Designing an Open-Source Automated Feedback System
for STEM Education [5.326069675013602]
RATsAppはオープンソースの自動フィードバックシステム(AFS)で、フォーマティブフィードバックなどの研究ベースの機能を組み込んでいる。
このシステムは、数学的能力、表現能力、データリテラシーなどの中核的なSTEM能力に焦点を当てている。
オープンソースプラットフォームであるRATsAppは、継続的な開発へのパブリックコントリビューションを奨励し、教育ツールを改善するための共同アプローチを促進する。
論文 参考訳(メタデータ) (2024-01-19T07:13:07Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
ドクティック理論をベースとして,ハイブリッドAIシステムとして実装された,初のオープンソース自動フィードバックツールを提案する。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
論文 参考訳(メタデータ) (2023-07-10T11:05:51Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
本稿では,教育者の意思決定プロセスを支援するために,EDM技術を用いたリアルタイムAIを活用した新しい教室ツールを提案する。
ReACTは、ユーザフレンドリなグラフィカルインターフェースを備えたデータ駆動ツールである。
学生のパフォーマンスデータを分析し、コンテキストベースのアラートとコースプランニングのための教育者へのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2021-07-30T03:09:59Z) - Automated Personalized Feedback Improves Learning Gains in an
Intelligent Tutoring System [34.19909376464836]
大規模知的学習システム(ITS)における自動的、データ駆動型、パーソナライズされたフィードバックが、学生の学習結果をいかに改善するかを検討する。
本稿では,個別の学生のニーズを考慮に入れたパーソナライズされたフィードバックを生成する機械学習手法を提案する。
我々は、最先端の機械学習と自然言語処理技術を利用して、学生にパーソナライズされたヒント、ウィキペディアに基づく説明、数学的ヒントを提供する。
論文 参考訳(メタデータ) (2020-05-05T18:30:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。