論文の概要: Extracting effective solutions hidden in large language models via generated comprehensive specialists: case studies in developing electronic devices
- arxiv url: http://arxiv.org/abs/2501.00224v1
- Date: Tue, 31 Dec 2024 02:20:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:17:37.387109
- Title: Extracting effective solutions hidden in large language models via generated comprehensive specialists: case studies in developing electronic devices
- Title(参考訳): 生成包括的専門家による大規模言語モデルに隠された効果的な解の抽出--電子デバイス開発における事例研究
- Authors: Hikari Tomita, Nobuhiro Nakamura, Shoichi Ishida, Toshio Kamiya, Kei Terayama,
- Abstract要約: 現実世界の研究と開発は、しばしば複雑な学際的な課題を解決する必要がある。
大規模な言語モデル(LLM)の膨大な包括的知識を活用して、ブレークスルーソリューションを生成することが望ましい。
本稿では、LLMと構造化ガイダンスを利用したフレームワークであるSELLM(Solutionion via comprehensive List and LLM)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recently, many studies have increasingly explored the use of large language models (LLMs) to generate research ideas and scientific hypotheses. However, real-world research and development often require solving complex, interdisciplinary challenges where solutions may not be readily found through existing knowledge related to the problem. Therefore, it is desirable to leverage the vast, comprehensive knowledge of LLMs to generate effective, breakthrough solutions by integrating various perspectives from other disciplines. Here, we propose SELLM (Solution Enumeration via comprehensive List and LLM), a framework leveraging LLMs and structured guidance using MECE (Mutually Exclusive, Collectively Exhaustive) principles, such as International Patent Classification (IPC) and the periodic table of elements. SELLM systematically constructs comprehensive expert agents from the list to generate cross-disciplinary and effective solutions. To evaluate SELLM's practicality, we applied it to two challenges: improving light extraction in organic light-emitting diode (OLED) lighting and developing electrodes for next-generation memory materials. The results demonstrate that SELLM significantly facilitates the generation of effective solutions compared to cases without specific customization or effort, showcasing the potential of SELLM to enable LLMs to generate effective solutions even for challenging problems.
- Abstract(参考訳): 近年,大規模言語モデル(LLM)を用いて研究思想や科学的仮説を創出する研究が盛んに行われている。
しかし、現実世界の研究と開発は、しばしば、その問題に関連する既存の知識からソリューションが容易に見つからないような、複雑な学際的な課題を解決する必要がある。
したがって、LLMの膨大な包括的知識を活用して、他の分野から様々な視点を統合することにより、効果的で画期的なソリューションを創出することが望ましい。
SELLM(Solution Enumeration via comprehensive List and LLM)は,国際特許分類(IPC)や元素周期表などのMECE(Mutually Exclusive, Collective Exhaustive)の原則を用いたLCMと構造化ガイダンスを利用するフレームワークである。
SELLMは、学際的で効果的なソリューションを生成するために、リストから包括的な専門家エージェントを体系的に構築する。
SELLMの実用性を評価するため,有機発光ダイオード(OLED)照明における光抽出の改善と次世代メモリ材料用電極の開発という2つの課題に適用した。
その結果, SELLMは, 特定のカスタマイズや努力を伴わない場合と比較して, 有効解の生成を著しく促進することを示した。
関連論文リスト
- Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
本稿では,大規模言語モデル(LLM)のエネルギー管理への統合について検討する。
本稿では、自動問題定式化、コード生成、カスタマイズ最適化のために、LLMを検索拡張生成で強化する革新的なソリューションを提案する。
本稿では,電気自動車の充電スケジューリングと最適化における提案手法の有効性を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2025-01-26T14:31:03Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - Optimal Decision Making Through Scenario Simulations Using Large Language Models [0.0]
大規模言語モデル(LLM)は、複雑な問題へのアプローチと解決の方法を変えました。
本稿では,この能力ギャップを橋渡しする革新的な手法を提案する。
LLMがユーザから複数のオプションとそれぞれのパラメータをリクエストできるようにすることで、動的フレームワークを導入しています。
この関数は提供された選択肢を分析し、潜在的な結果をシミュレートし、最も有利な解を決定するように設計されている。
論文 参考訳(メタデータ) (2024-07-09T01:23:09Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
大規模言語モデル (LLM) には膨大な量の世界知識があり、自然言語処理 (NLP) タスクの性能向上のために様々な分野に応用できるようになっている。
これはまた、人間とAIシステム間の会話に基づく対話による、意図した問題を解決するための、よりアクセスしやすいパラダイムを促進する。
研究科学者」と「レガリー・マター・インテーク」の2つの詳細なケーススタディを通して、我々のアプローチの実践性を示す。
論文 参考訳(メタデータ) (2024-04-29T12:16:08Z) - Beyond LLMs: Advancing the Landscape of Complex Reasoning [0.35813349058229593]
EC AIプラットフォームは、制約満足度と最適化問題を解決するために、ニューロシンボリックアプローチを採用している。
システムは正確で高性能な論理推論エンジンを採用している。
システムは、自然言語と簡潔な言語でアプリケーションロジックを指定する開発者をサポートする。
論文 参考訳(メタデータ) (2024-02-12T21:14:45Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - Opportunities and Challenges of Applying Large Language Models in
Building Energy Efficiency and Decarbonization Studies: An Exploratory
Overview [3.580636644178055]
本稿では,エネルギー効率と脱炭研究におけるLarge Language Models(LLMs)の適用,意義,可能性について検討する。
LLMの有望な可能性にもかかわらず、複雑で高価な計算、データのプライバシ、セキュリティと著作権、微調整されたLLMの複雑さ、自己整合性といった課題について議論する。
論文 参考訳(メタデータ) (2023-12-18T20:58:58Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
拡張ベンチマークスイートSciBench for Large Language Model (LLM)を導入する。
SciBenchには、数学、化学、物理学の分野から、さまざまな大学レベルの科学的問題を含むデータセットが含まれている。
その結果、現在のLLMは満足のいく性能を達成できないことが判明し、全体のスコアは43.22%に過ぎなかった。
論文 参考訳(メタデータ) (2023-07-20T07:01:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。