論文の概要: An Overview and Discussion on Using Large Language Models for Implementation Generation of Solutions to Open-Ended Problems
- arxiv url: http://arxiv.org/abs/2501.00562v1
- Date: Tue, 31 Dec 2024 17:48:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:53.715778
- Title: An Overview and Discussion on Using Large Language Models for Implementation Generation of Solutions to Open-Ended Problems
- Title(参考訳): 大規模言語モデルを用いたオープンエンド問題の解生成に関する概観と考察
- Authors: Hashmath Shaik, Alex Doboli,
- Abstract要約: 大規模言語モデルは、オープンな問題に対する問題解決活動をサポートする新しいメソッドの作成をサポートすることができる。
本報告では、モデルプロンプト、強化学習、検索型生成を含む、大規模言語モデルに関する現在の研究を要約する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models offer new opportunities to devise automated implementation generation methods that can tackle problem solving activities beyond traditional methods, which require algorithmic specifications and can use only static domain knowledge, like performance metrics and libraries of basic building blocks. Large Language Models could support creating new methods to support problem solving activities for open-ended problems, like problem framing, exploring possible solving approaches, feature elaboration and combination, more advanced implementation assessment, and handling unexpected situations. This report summarized the current work on Large Language Models, including model prompting, Reinforcement Learning, and Retrieval-Augmented Generation. Future research requirements were also discussed.
- Abstract(参考訳): 大きな言語モデルは、アルゴリズム的な仕様を必要とし、パフォーマンスメトリクスや基本的なビルディングブロックのライブラリのような静的ドメイン知識のみを使用する、従来のメソッドを超えた問題解決活動に取り組むことができる自動実装生成メソッドを考案する新たな機会を提供する。
大規模言語モデルは、問題解決活動をサポートする新しいメソッドの作成をサポートすることができる。例えば、問題フレーミング、可能な解決アプローチの探索、機能開発と組み合わせ、より高度な実装評価、予期せぬ状況への対応などである。
本報告では、モデルプロンプト、強化学習、検索型生成を含む、大規模言語モデルに関する現在の研究を要約する。
今後の研究要件も議論された。
関連論文リスト
- Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations [0.0]
大規模な言語モデルは自然言語処理においてユビキタスである。
本稿では,資源要件の低減と大規模言語モデルの圧縮に関する諸技術について概説する。
論文 参考訳(メタデータ) (2024-08-06T12:07:32Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Model-based Programming: Redefining the Atomic Unit of Programming for
the Deep Learning Era [2.712076884994214]
本稿では,モデルベースプログラミングの概念を提案し,新しいプログラミング言語であるM言語を提案する。
M言語はモデルを基本的な計算単位として扱い、開発者がより重要なタスクに集中できるようにする。
論文 参考訳(メタデータ) (2023-05-12T09:38:11Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
大規模に多様なデータに基づいて事前訓練された基礎モデルは、幅広いビジョンと言語タスクにおいて異常な能力を示してきた。
ファンデーションモデルをトレーニングし、他のエージェントと対話し、長期的な推論を行うための新しいパラダイムが生まれている。
基礎モデルと意思決定の交わりにおける研究は、強力な新しいシステムを作るための大きな約束である。
論文 参考訳(メタデータ) (2023-03-07T18:44:07Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Learning to Generalize for Sequential Decision Making [19.075378799280728]
本稿では,教師による模倣学習手法と,強化学習モデルを自然言語理解モデルに変換する方法を紹介する。
モデルがより速く学習し、より一般化できることを示し、模倣学習と改革の両方を活用する。
論文 参考訳(メタデータ) (2020-10-05T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。