論文の概要: Sampling from multi-modal distributions with polynomial query complexity in fixed dimension via reverse diffusion
- arxiv url: http://arxiv.org/abs/2501.00565v3
- Date: Thu, 23 Oct 2025 16:18:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:03.115208
- Title: Sampling from multi-modal distributions with polynomial query complexity in fixed dimension via reverse diffusion
- Title(参考訳): 逆拡散による固定次元における多項式クエリ複雑性をもつ多モード分布からのサンプリング
- Authors: Adrien Vacher, Omar Chehab, Anna Korba,
- Abstract要約: 分布の幅広いクラスに対する最初のサンプリングアルゴリズムを提供する。
我々のアルゴリズムは時間反転拡散過程をシミュレートする。
メタスタビリティを回避し、モード位置に関する事前の知識を必要とせず、よく知られた対数平滑性仮定を緩和する。
- 参考スコア(独自算出の注目度): 16.463220658992064
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Even in low dimensions, sampling from multi-modal distributions is challenging. We provide the first sampling algorithm for a broad class of distributions -- including all Gaussian mixtures -- with a query complexity that is polynomial in the parameters governing multi-modality, assuming fixed dimension. Our sampling algorithm simulates a time-reversed diffusion process, using a self-normalized Monte Carlo estimator of the intermediate score functions. Unlike previous works, it avoids metastability, requires no prior knowledge of the mode locations, and relaxes the well-known log-smoothness assumption which excluded general Gaussian mixtures so far.
- Abstract(参考訳): 低次元であっても、マルチモーダル分布からのサンプリングは困難である。
固定次元を仮定して、多モード性を管理するパラメータの多項式であるクエリ複雑性を持つ、全てのガウス混合を含む分布の幅広いクラスに対する最初のサンプリングアルゴリズムを提供する。
サンプリングアルゴリズムは,中間スコア関数の自己正規化モンテカルロ推定器を用いて,時間反転拡散過程をシミュレートする。
以前の研究とは異なり、メタスタビリティを回避し、モード位置の事前の知識を必要とせず、一般的なガウス混合を除外したよく知られた対数平滑性仮定を緩和する。
関連論文リスト
- Improved sampling algorithms and Poincaré inequalities for non-log-concave distributions [1.9753732769115382]
これは$d$と$frac1epsilon$である。 $L=mathcalO(1)$と$M=mathrmpoly(d)$である。
論文 参考訳(メタデータ) (2025-07-15T12:06:11Z) - On the query complexity of sampling from non-log-concave distributions [2.4253233571593547]
密度$p(x)propto e-f(x)$を持つ$d$次元分布からサンプリングする問題を、必ずしも良好な等尺条件を満たすとは限らない。
広い範囲のパラメータに対して、サンプリングは$d$の超指数係数による最適化よりも厳密に容易であることを示す。
論文 参考訳(メタデータ) (2025-02-10T06:54:16Z) - On the sampling complexity of coherent superpositions [0.4972323953932129]
重ね合わせにPOVMを適用する際に測定結果の分布からサンプリングする問題を考察する。
我々は、$-$$$$O(chi |c|2 log1/delta)$そのようなサンプルを与えられたアルゴリズムを与え、確率密度関数を評価するためにオラクルを呼び出す。
論文 参考訳(メタデータ) (2025-01-28T16:56:49Z) - Efficiently learning and sampling multimodal distributions with data-based initialization [20.575122468674536]
静止測度から少数のサンプルを与えられたマルコフ連鎖を用いて多重モーダル分布をサンプリングする問題を考察する。
マルコフ連鎖が$k$dのスペクトルギャップを持つ場合、静止分布からのサンプルは、静止測度からテレビ距離において$varepsilon$-closeの条件法則を持つサンプルを効率よく生成する。
論文 参考訳(メタデータ) (2024-11-14T01:37:02Z) - Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでのみ実行できるように並列化可能であることを示す。
また、我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでしか実行できないことを示す。
論文 参考訳(メタデータ) (2024-06-03T01:34:34Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Efficient Sampling of Stochastic Differential Equations with Positive
Semi-Definite Models [91.22420505636006]
本稿では, ドリフト関数と拡散行列を考慮し, 微分方程式からの効率的なサンプリング問題を扱う。
1/varepsilonは$m2d log (1/varepsilon)$である。
以上の結果から,真の解がより滑らかになるにつれて,どのような凸性も必要とせず,次元の呪いを回避できることが示唆された。
論文 参考訳(メタデータ) (2023-03-30T02:50:49Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
本稿では,グループ分散ロバスト最適化 (GDRO) を,$m$以上の異なる分布をうまく処理するモデルを学習する目的で検討する。
各ラウンドのサンプル数を$m$から1に抑えるため、GDROを2人でプレイするゲームとして、一方のプレイヤーが実行し、他方のプレイヤーが非公開のマルチアームバンディットのオンラインアルゴリズムを実行する。
第2のシナリオでは、最大リスクではなく、平均的最上位k$リスクを最適化し、分散の影響を軽減することを提案する。
論文 参考訳(メタデータ) (2023-02-18T09:24:15Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
この研究は、平均報酬マルコフ決定過程(AMDP)における$varepsilon$-Optimal Policyを得る際のサンプルの複雑さを考察する。
我々は、状態-作用対当たりの$widetilde O(H varepsilon-3 ln frac1delta)$サンプルを証明し、$H := sp(h*)$は任意の最適ポリシーのバイアスのスパンであり、$varepsilon$は精度、$delta$は失敗確率である。
論文 参考訳(メタデータ) (2022-12-01T15:57:58Z) - Optimal Sublinear Sampling of Spanning Trees and Determinantal Point
Processes via Average-Case Entropic Independence [3.9586758145580014]
強いレイリー分布から繰り返しサンプリングする高速アルゴリズムを設計する。
グラフ $G=(V, E)$ に対して、$G$ in $widetildeO(lvert Vrvert)$ time per sample から一様にランダムに散らばる木を概算する方法を示す。
$n$要素の基底集合の$k$のサブセット上の決定的点プロセスに対して、$widetildeO(komega)$ time の最初の $widetildeO(nk) の後に、$widetildeO(komega)$ time のサンプルを概算する方法を示す。
論文 参考訳(メタデータ) (2022-04-06T04:11:26Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
低忠実度状態におけるノイズランダム量子回路の測定結果の分布について検討する。
十分に弱くユニタリな局所雑音に対して、一般的なノイズ回路インスタンスの出力分布$p_textnoisy$間の相関(線形クロスエントロピーベンチマークで測定)は指数関数的に減少する。
ノイズが不整合であれば、出力分布は、正確に同じ速度で均一分布の$p_textunif$に近づく。
論文 参考訳(メタデータ) (2021-11-29T19:26:28Z) - Wasserstein distance estimates for the distributions of numerical
approximations to ergodic stochastic differential equations [0.3553493344868413]
エルゴード微分方程式のイン分布と強い対数凸の場合の分布との間のワッサースタイン距離について検討した。
これにより、過減衰および過減衰ランジュバン力学の文献で提案されている多くの異なる近似を統一的に研究することができる。
論文 参考訳(メタデータ) (2021-04-26T07:50:04Z) - Complexity of zigzag sampling algorithm for strongly log-concave
distributions [6.336005544376984]
強いログ凹分布に対するジグザグサンプリングアルゴリズムの計算複雑性について検討する。
ジグザグサンプリングアルゴリズムは, 計算コストが$obiglに匹敵するchi-squareの発散において, $varepsilon$ 誤差を達成することを証明した。
論文 参考訳(メタデータ) (2020-12-21T03:10:21Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。