論文の概要: Beyond Text: Implementing Multimodal Large Language Model-Powered Multi-Agent Systems Using a No-Code Platform
- arxiv url: http://arxiv.org/abs/2501.00750v1
- Date: Wed, 01 Jan 2025 06:36:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:38.277993
- Title: Beyond Text: Implementing Multimodal Large Language Model-Powered Multi-Agent Systems Using a No-Code Platform
- Title(参考訳): テキストを超えて: ノーコードプラットフォームを用いたマルチモーダル大言語モデル駆動マルチエージェントシステムの実装
- Authors: Cheonsu Jeong,
- Abstract要約: 本研究では,マルチモーダルLLMに基づくマルチエージェントシステム(MAS)の設計と実装を提案する。
本研究は,プログラム知識のないユーザによるAIシステムの構築と管理を容易にするために,No-Codeベースのマルチエージェントシステムを開発した。
本研究では、画像ベースのノートからのコード生成、高度なRAGベースの質問応答システム、テキストベースの画像生成、ビデオ生成など、ビジネスプロセスにおけるAIの適用性を検証するためのさまざまなユースケースについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study proposes the design and implementation of a multimodal LLM-based Multi-Agent System (MAS) leveraging a No-Code platform to address the practical constraints and significant entry barriers associated with AI adoption in enterprises. Advanced AI technologies, such as Large Language Models (LLMs), often pose challenges due to their technical complexity and high implementation costs, making them difficult for many organizations to adopt. To overcome these limitations, this research develops a No-Code-based Multi-Agent System designed to enable users without programming knowledge to easily build and manage AI systems. The study examines various use cases to validate the applicability of AI in business processes, including code generation from image-based notes, Advanced RAG-based question-answering systems, text-based image generation, and video generation using images and prompts. These systems lower the barriers to AI adoption, empowering not only professional developers but also general users to harness AI for significantly improved productivity and efficiency. By demonstrating the scalability and accessibility of No-Code platforms, this study advances the democratization of AI technologies within enterprises and validates the practical applicability of Multi-Agent Systems, ultimately contributing to the widespread adoption of AI across various industries.
- Abstract(参考訳): 本研究では,企業におけるAI導入に伴う現実的制約と重要な参入障壁に対処するために,No-Codeプラットフォームを活用したマルチモーダルLLMベースのマルチエージェントシステム(MAS)の設計と実装を提案する。
LLM(Large Language Models)のような先進的なAI技術は、技術的な複雑さと高い実装コストのためにしばしば課題を提起する。
これらの制限を克服するために,プログラム知識のないユーザによるAIシステムの構築と管理を容易にするために,No-Codeベースのマルチエージェントシステムを開発した。
本研究では、画像ベースノートからのコード生成、高度なRAGベースの質問応答システム、テキストベースの画像生成、画像とプロンプトを用いたビデオ生成など、ビジネスプロセスにおけるAIの適用性を検証するさまざまなユースケースについて検討する。
これらのシステムはAI採用の障壁を低くし、プロの開発者だけでなく、一般ユーザもAIを活用して生産性と効率を大幅に改善する。
この研究は、No-Codeプラットフォームのスケーラビリティとアクセシビリティを実証することにより、企業内のAI技術の民主化を進め、マルチエージェントシステムの実践的適用性を検証し、最終的に様々な産業におけるAIの普及に寄与する。
関連論文リスト
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Beyond LLMs: Advancing the Landscape of Complex Reasoning [0.35813349058229593]
EC AIプラットフォームは、制約満足度と最適化問題を解決するために、ニューロシンボリックアプローチを採用している。
システムは正確で高性能な論理推論エンジンを採用している。
システムは、自然言語と簡潔な言語でアプリケーションロジックを指定する開発者をサポートする。
論文 参考訳(メタデータ) (2024-02-12T21:14:45Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
ディープニューラルネットワーク(DNN)は、オブジェクトや音声認識など、さまざまな人工知能(AI)推論タスクにおいて大きな進歩をもたらした。
このようなAIモデルをコモディティデバイスにデプロイすることは、大きな課題に直面している。
クロススタック手法によりリアルタイムな性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2021-06-21T11:23:12Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Validate and Enable Machine Learning in Industrial AI [47.20869253934116]
産業用AIは、より効率的な将来の産業用制御システムを約束する。
Petuum Optimumシステムは、AIモデルの作成とテストの課題を示す例として使用される。
論文 参考訳(メタデータ) (2020-10-30T20:33:05Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。