Evaluating Time Series Foundation Models on Noisy Periodic Time Series
- URL: http://arxiv.org/abs/2501.00889v2
- Date: Wed, 08 Jan 2025 14:50:23 GMT
- Title: Evaluating Time Series Foundation Models on Noisy Periodic Time Series
- Authors: Syamantak Datta Gupta,
- Abstract summary: This paper presents an empirical study evaluating the performance of time series foundation models (TSFMs) over two datasets constituting noisy periodic time series.<n>Our findings demonstrate that while for time series with bounded periods, TSFMs can match or outperform the statistical approaches, their forecasting abilities deteriorate with longer periods, higher noise levels, lower sampling rates and more complex shapes of the time series.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recent advancements in foundation models have significantly impacted machine learning, rigorous tests on the performance of time series foundation models (TSFMs) remain largely underexplored. This paper presents an empirical study evaluating the zero-shot, long-horizon forecasting abilities of several leading TSFMs over two synthetic datasets constituting noisy periodic time series. We assess model efficacy across different noise levels, underlying frequencies, and sampling rates. As benchmarks for comparison, we choose two statistical techniques: a Fourier transform (FFT)-based approach and a linear autoregressive (AR) model. Our findings demonstrate that while for time series with bounded periods and higher sampling rates, TSFMs can match or outperform the statistical approaches, their forecasting abilities deteriorate with longer periods, higher noise levels, lower sampling rates and more complex shapes of the time series.
Related papers
- Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models [104.17057231661371]
Time series analysis is crucial for understanding dynamics of complex systems.
Recent advances in foundation models have led to task-agnostic Time Series Foundation Models (TSFMs) and Large Language Model-based Time Series Models (TSLLMs)
Their success depends on large, diverse, and high-quality datasets, which are challenging to build due to regulatory, diversity, quality, and quantity constraints.
This survey provides a comprehensive review of synthetic data for TSFMs and TSLLMs, analyzing data generation strategies, their role in model pretraining, fine-tuning, and evaluation, and identifying future research directions.
arXiv Detail & Related papers (2025-03-14T13:53:46Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.
We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.
Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data [22.458320848520042]
TimePFN is based on the concept of Prior-data Fitted Networks (PFN), which aims to approximate Bayesian inference.
We evaluate TimePFN on several benchmark datasets and demonstrate that it outperforms the existing state-of-the-art models for MTS forecasting.
arXiv Detail & Related papers (2025-02-22T16:55:14Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.
A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.
An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - FM-TS: Flow Matching for Time Series Generation [71.31148785577085]
We introduce FM-TS, a rectified Flow Matching-based framework for Time Series generation.
FM-TS is more efficient in terms of training and inference.
We have achieved superior performance in solar forecasting and MuJoCo imputation tasks.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - Retrieval-Augmented Diffusion Models for Time Series Forecasting [19.251274915003265]
We propose a Retrieval- Augmented Time series Diffusion model (RATD)
RATD consists of two parts: an embedding-based retrieval process and a reference-guided diffusion model.
Our approach allows leveraging meaningful samples within the database to aid in sampling, thus maximizing the utilization of datasets.
arXiv Detail & Related papers (2024-10-24T13:14:39Z) - FDF: Flexible Decoupled Framework for Time Series Forecasting with Conditional Denoising and Polynomial Modeling [5.770377200028654]
Time series forecasting is vital in numerous web applications, influencing critical decision-making across industries.
We argue that diffusion models suffer from a significant drawback: indiscriminate noise addition to the original time series followed by denoising.
We propose a novel flexible decoupled framework that learns high-quality time series representations for enhanced forecasting performance.
arXiv Detail & Related papers (2024-10-17T06:20:43Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - CLeaRForecast: Contrastive Learning of High-Purity Representations for
Time Series Forecasting [2.5816901096123863]
Time series forecasting (TSF) holds significant importance in modern society, spanning numerous domains.
Previous representation learning-based TSF algorithms typically embrace a contrastive learning paradigm featuring segregated trend-periodicity representations.
We propose CLeaRForecast, a novel contrastive learning framework to learn high-purity time series representations with proposed sample, feature, and architecture purifying methods.
arXiv Detail & Related papers (2023-12-10T04:37:43Z) - Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis [70.78170766633039]
We address the need for means of assessing MTS forecasting proposals reliably and fairly.
BasicTS+ is a benchmark designed to enable fair, comprehensive, and reproducible comparison of MTS forecasting solutions.
We apply BasicTS+ along with rich datasets to assess the capabilities of more than 45 MTS forecasting solutions.
arXiv Detail & Related papers (2023-10-09T19:52:22Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Series is a novel end-to-end approach that reprograms acoustic models for time series classification.
We show that V2S either outperforms or is tied with state-of-the-art methods on 20 tasks, and improves their average accuracy by 1.84%.
arXiv Detail & Related papers (2021-06-17T07:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.