HPC Application Parameter Autotuning on Edge Devices: A Bandit Learning Approach
- URL: http://arxiv.org/abs/2501.01057v1
- Date: Thu, 02 Jan 2025 04:59:32 GMT
- Title: HPC Application Parameter Autotuning on Edge Devices: A Bandit Learning Approach
- Authors: Abrar Hossain, Abdel-Hameed A. Badawy, Mohammad A. Islam, Tapasya Patki, Kishwar Ahmed,
- Abstract summary: We introduce LASP, a novel strategy designed to address the parameter search space challenge in edge devices.
Our strategy employs a multi-armed bandit (MAB) technique focused on online exploration and exploitation.
We tested LASP with four HPC applications: Lulesh, Kripke, Clomp, and Hypre.
- Score: 0.4543820534430522
- License:
- Abstract: The growing necessity for enhanced processing capabilities in edge devices with limited resources has led us to develop effective methods for improving high-performance computing (HPC) applications. In this paper, we introduce LASP (Lightweight Autotuning of Scientific Application Parameters), a novel strategy designed to address the parameter search space challenge in edge devices. Our strategy employs a multi-armed bandit (MAB) technique focused on online exploration and exploitation. Notably, LASP takes a dynamic approach, adapting seamlessly to changing environments. We tested LASP with four HPC applications: Lulesh, Kripke, Clomp, and Hypre. Its lightweight nature makes it particularly well-suited for resource-constrained edge devices. By employing the MAB framework to efficiently navigate the search space, we achieved significant performance improvements while adhering to the stringent computational limits of edge devices. Our experimental results demonstrate the effectiveness of LASP in optimizing parameter search on edge devices.
Related papers
- Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.
Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.
We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - HyperQ-Opt: Q-learning for Hyperparameter Optimization [0.0]
This paper presents a novel perspective on HPO by formulating it as a sequential decision-making problem and leveraging Q-learning, a reinforcement learning technique.
The approaches are evaluated for their ability to find optimal or near-optimal configurations within a limited number of trials.
By shifting the paradigm toward policy-based optimization, this work contributes to advancing HPO methods for scalable and efficient machine learning applications.
arXiv Detail & Related papers (2024-12-23T18:22:34Z) - EdgeRL: Reinforcement Learning-driven Deep Learning Model Inference Optimization at Edge [2.8946323553477704]
We propose EdgeRL framework that seeks to strike balance by using an Advantage Actor-Critic (A2C) Reinforcement Learning (RL) approach.
We evaluate the benefits of EdgeRL framework in terms of end device energy savings, inference accuracy improvement, and end-to-end inference latency reduction.
arXiv Detail & Related papers (2024-10-16T04:31:39Z) - AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation [37.456499537121886]
Recent advancements in Large Language Models have transformed ML/AI development.
Recent advancements in Large Language Models have transformed AutoML principles for the Retrieval-Augmented Generation (RAG) systems.
arXiv Detail & Related papers (2024-06-27T15:18:21Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - PriorBand: Practical Hyperparameter Optimization in the Age of Deep
Learning [49.92394599459274]
We propose PriorBand, an HPO algorithm tailored to Deep Learning (DL) pipelines.
We show its robustness across a range of DL benchmarks and show its gains under informative expert input and against poor expert beliefs.
arXiv Detail & Related papers (2023-06-21T16:26:14Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments.
We propose an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner Architectures (IMPALA)
arXiv Detail & Related papers (2021-10-24T11:25:03Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - AVAC: A Machine Learning based Adaptive RRAM Variability-Aware
Controller for Edge Devices [3.7346292069282643]
We propose an Adaptive RRAM Variability-Aware Controller, AVAC, which periodically updates Wait Buffer and batch sizes.
AVAC allows Edge devices to adapt to different applications and their stages, to improve performance and reduce energy consumption.
arXiv Detail & Related papers (2020-05-06T19:06:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.