論文の概要: Evidential Calibrated Uncertainty-Guided Interactive Segmentation paradigm for Ultrasound Images
- arxiv url: http://arxiv.org/abs/2501.01072v1
- Date: Thu, 02 Jan 2025 05:41:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:16.253040
- Title: Evidential Calibrated Uncertainty-Guided Interactive Segmentation paradigm for Ultrasound Images
- Title(参考訳): 超音波画像のための証拠校正不確かさ誘導型インタラクティブセグメンテーションパラダイム
- Authors: Jiang Shang, Yuanmeng Wu, Xiaoxiang Han, Xi Chen, Qi Zhang,
- Abstract要約: Evidential Uncertainty-Guided Interactive (EUGIS) は、超音波画像セグメンテーションの明確な不確実性推定に基づくエンドツーエンドの対話的セグメンテーションパラダイムである。
提案手法は, 高度に訓練された放射線学者の対話行動のシミュレーションを効果的に行うことができ, サンプリング対象度を高めつつ, 必要なプロンプトやイテレーションの数を削減できる。
- 参考スコア(独自算出の注目度): 8.010602776500237
- License:
- Abstract: Accurate and robust ultrasound image segmentation is critical for computer-aided diagnostic systems. Nevertheless, the inherent challenges of ultrasound imaging, such as blurry boundaries and speckle noise, often cause traditional segmentation methods to struggle with performance. Despite recent advancements in universal image segmentation, such as the Segment Anything Model, existing interactive segmentation methods still suffer from inefficiency and lack of specialization. These methods rely heavily on extensive accurate manual or random sampling prompts for interaction, necessitating numerous prompts and iterations to reach satisfactory performance. In response to this challenge, we propose the Evidential Uncertainty-Guided Interactive Segmentation (EUGIS), an end-to-end, efficient tiered interactive segmentation paradigm based on evidential uncertainty estimation for ultrasound image segmentation. Specifically, EUGIS harnesses evidence-based uncertainty estimation, grounded in Dempster-Shafer theory and Subjective Logic, to gauge the level of uncertainty in the predictions of model for different regions. By prioritizing sampling the high-uncertainty region, our method can effectively simulate the interactive behavior of well-trained radiologists, enhancing the targeted of sampling while reducing the number of prompts and iterations required.Additionally, we propose a trainable calibration mechanism for uncertainty estimation, which can further optimize the boundary between certainty and uncertainty, thereby enhancing the confidence of uncertainty estimation.
- Abstract(参考訳): コンピュータ支援診断システムでは,高精度でロバストな超音波画像分割が重要である。
それでも、ぼやけた境界やスペックルノイズのような超音波画像の固有の課題は、しばしば伝統的なセグメンテーション法が性能に支障をきたす。
Segment Anything Modelのような画像分割の最近の進歩にもかかわらず、既存のインタラクティブセグメンテーション手法は依然として非効率性や特殊化の欠如に悩まされている。
これらの手法は、対話のための広範囲な正確な手動またはランダムなサンプリングプロンプトに大きく依存し、満足なパフォーマンスに達するためには、多くのプロンプトとイテレーションを必要とする。
この課題に対応するために, 超音波画像のセグメンテーションに対する明らかな不確実性推定に基づく, エンドツーエンドで効率的な相互結合型セグメンテーションパラダイムであるEvidential Uncertainty-Guided Interactive Segmentation (EUGIS)を提案する。
具体的には、EUGISはDempster-Shafer理論と主観論理に基づいてエビデンスに基づく不確実性を推定し、異なる領域のモデルの予測における不確実性のレベルを測定する。
高不確実性領域のサンプリングを優先することにより、よく訓練された放射線学者のインタラクティブな振る舞いを効果的にシミュレートし、必要なプロンプトやイテレーションの回数を減らしながらサンプリング対象を拡大し、不確実性評価のためのトレーニング可能なキャリブレーション機構を提案し、確実性と不確実性の境界をさらに最適化し、不確実性推定の信頼性を高める。
関連論文リスト
- SPA: Efficient User-Preference Alignment against Uncertainty in Medical Image Segmentation [8.34233304138989]
textbfSPAは、人間との相互作用が最小限である様々なテストタイムの好みに効率的に適応する。
好みのセグメンテーションに達すると、臨床の作業量を減らす。
1) 既存の対話的セグメンテーションアプローチと比較して, 臨床時間と労力の大幅な削減が示されている。
論文 参考訳(メタデータ) (2024-11-23T10:27:08Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
我々は、RCPS(Rectified Contrastive Pseudo Supervision)という、新しい半教師付きセグメンテーション手法を提案する。
RCPSは、修正された疑似監督とボクセルレベルのコントラスト学習を組み合わせて、半教師付きセグメンテーションの有効性を向上させる。
実験結果から, 半教師付き医用画像分割における最先端手法と比較して, 高いセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2023-01-13T12:03:58Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
本研究では,不確実性予測のためのCRISPをContRastive Imageとして提案する。
CRISPはその中核として、有効なセグメンテーションの分布を符号化するジョイント潜在空間を学習するためのコントラスト的手法を実装している。
この共同潜伏空間を用いて予測を数千の潜伏ベクトルと比較し、解剖学的に一貫した不確実性写像を提供する。
論文 参考訳(メタデータ) (2022-06-15T16:56:58Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
本稿では,自己適応信頼度校正(MECCA)を用いた対話型メダカルセグメンテーションという対話型セグメンテーションフレームワークを提案する。
新規な行動に基づく信頼ネットワークを通じて評価を確立し、MARLから補正動作を得る。
種々の医用画像データセットに対する実験結果から,提案アルゴリズムの有意な性能が示された。
論文 参考訳(メタデータ) (2021-11-15T12:38:56Z) - Adaptive Affinity Loss and Erroneous Pseudo-Label Refinement for Weakly
Supervised Semantic Segmentation [48.294903659573585]
本稿では,多段階アプローチの親和性学習を単一段階モデルに組み込むことを提案する。
深層ニューラルネットワークは、トレーニングフェーズで包括的なセマンティック情報を提供するために使用される。
提案手法の有効性を評価するため,PASCAL VOC 2012データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-08-03T07:48:33Z) - Analyzing Epistemic and Aleatoric Uncertainty for Drusen Segmentation in
Optical Coherence Tomography Images [4.125187280299246]
加齢関連黄斑変性症(AMD)は60歳以上の高齢者の永久視喪失の原因の1つである。
我々は,u-netに基づくドルーゼンセグメンテーションモデルを開発し,セグメンテーションの不確かさを定量化する。
論文 参考訳(メタデータ) (2021-01-21T23:34:29Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。