論文の概要: Long-range Brain Graph Transformer
- arxiv url: http://arxiv.org/abs/2501.01100v1
- Date: Thu, 02 Jan 2025 06:49:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:12:57.217870
- Title: Long-range Brain Graph Transformer
- Title(参考訳): 長距離脳グラフ変換器
- Authors: Shuo Yu, Shan Jin, Ming Li, Tabinda Sarwar, Feng Xia,
- Abstract要約: 長距離接続は、脳全体にわたる多様な機能的神経統合を促進する上で重要な役割を担っている。
従来の研究は、主に長距離依存を無視しながら、脳ネットワーク内の短距離依存に焦点を当てていた。
本稿では,脳ROI間の長距離依存性を捉えるために,適応型長距離認識変換器(ALTER)を提案する。
- 参考スコア(独自算出の注目度): 11.136353420236427
- License:
- Abstract: Understanding communication and information processing among brain regions of interest (ROIs) is highly dependent on long-range connectivity, which plays a crucial role in facilitating diverse functional neural integration across the entire brain. However, previous studies generally focused on the short-range dependencies within brain networks while neglecting the long-range dependencies, limiting an integrated understanding of brain-wide communication. To address this limitation, we propose Adaptive Long-range aware TransformER (ALTER), a brain graph transformer to capture long-range dependencies between brain ROIs utilizing biased random walk. Specifically, we present a novel long-range aware strategy to explicitly capture long-range dependencies between brain ROIs. By guiding the walker towards the next hop with higher correlation value, our strategy simulates the real-world brain-wide communication. Furthermore, by employing the transformer framework, ALERT adaptively integrates both short- and long-range dependencies between brain ROIs, enabling an integrated understanding of multi-level communication across the entire brain. Extensive experiments on ABIDE and ADNI datasets demonstrate that ALTER consistently outperforms generalized state-of-the-art graph learning methods (including SAN, Graphormer, GraphTrans, and LRGNN) and other graph learning based brain network analysis methods (including FBNETGEN, BrainNetGNN, BrainGNN, and BrainNETTF) in neurological disease diagnosis. Cases of long-range dependencies are also presented to further illustrate the effectiveness of ALTER. The implementation is available at \url{https://github.com/yushuowiki/ALTER}.
- Abstract(参考訳): 脳の関心領域(ROI)間のコミュニケーションと情報処理を理解することは、脳全体の多様な機能的神経統合を促進する上で重要な役割を担う長距離接続に大きく依存する。
しかし、以前の研究では一般的に、脳ネットワーク内の短距離依存に焦点を合わせながら、長距離依存を無視し、脳全体のコミュニケーションに関する統合的な理解を制限していた。
この制限に対処するために、偏りのあるランダムウォークを用いて脳ROI間の長距離依存性を捉える脳グラフ変換器であるAdaptive Long-range aware TransformER (ALTER)を提案する。
具体的には、脳ROI間の長距離依存を明示的に捉えるための、新しい長距離認識戦略を提案する。
より高い相関値で次のホップに向かって歩行を誘導することにより、我々の戦略は現実世界の脳全体のコミュニケーションをシミュレートする。
さらに、トランスフォーマーフレームワークを使用することで、ALERTは脳ROI間の短距離および長距離の依存関係を適応的に統合し、脳全体にわたるマルチレベルコミュニケーションの理解を可能にする。
ABIDEとADNIデータセットの大規模な実験により、ALTERは神経疾患の診断において、一般化されたグラフ学習法(SAN、Graphormer、GraphTrans、LRGNNを含む)および他のグラフ学習に基づく脳ネットワーク分析法(FBNETGEN、BrainNetGNN、BrainGNN、BrainNETTFを含む)を一貫して上回っていることが示された。
また、ALTERの有効性を示すために、長距離依存の事例も提示されている。
実装は \url{https://github.com/yushuowiki/ALTER} で公開されている。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks [4.675640373196467]
脳ネットワークの既存のモデルは、通常、脳の領域に焦点を当てたり、脳の結合性の複雑さを見落としたりする。
我々は脳の接続性を改善するための識別可能なモジュールを開発した。
実験の結果,提案手法は様々なベースラインモデルの性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-05-28T23:49:52Z) - Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data [2.193937336601403]
本稿では,rsfMRIによる接続行列上のグラフニューラルネットワークを用いて,インテリジェンス(流動性,結晶化,全知能)を予測するBrainRGINという新しいモデリングアーキテクチャを提案する。
本手法では,脳のサブネットワーク組織の性質を反映するグラフ畳み込み層に,クラスタリングに基づく埋め込みとグラフ同型ネットワークを組み込む。
論文 参考訳(メタデータ) (2023-11-06T20:58:07Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph
Evaluation Trajectory [0.0]
脳障害は、脳の構造的および機能的結合性の変化を観察することで検出できる。
最近の研究は、機械学習モデルの提案により、時間とともに脳の結合性の進化を予測することを目的としている。
本稿では、時間依存型脳疾患の診断において、より効率的な代替手段として、脳結合性を用いることを提案する。
論文 参考訳(メタデータ) (2021-10-06T09:25:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。