論文の概要: A redescription mining framework for post-hoc explaining and relating deep learning models
- arxiv url: http://arxiv.org/abs/2501.01209v1
- Date: Thu, 02 Jan 2025 11:38:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:08.241758
- Title: A redescription mining framework for post-hoc explaining and relating deep learning models
- Title(参考訳): 深層学習モデルの説明・関連のための再記述マイニングフレームワーク
- Authors: Matej Mihelčić, Ivan Grubišić, Miha Keber,
- Abstract要約: ディープラーニングモデル(DLM)は、構造化データと非構造化データの両方で、ますます高いパフォーマンスを達成する。
これらの成果にもかかわらず、DLMは巨大であるため説明が難しい。
本稿では,DLMの書き直しによる説明・関連のための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep learning models (DLMs) achieve increasingly high performance both on structured and unstructured data. They significantly extended applicability of machine learning to various domains. Their success in making predictions, detecting patterns and generating new data made significant impact on science and industry. Despite these accomplishments, DLMs are difficult to explain because of their enormous size. In this work, we propose a novel framework for post-hoc explaining and relating DLMs using redescriptions. The framework allows cohort analysis of arbitrary DLMs by identifying statistically significant redescriptions of neuron activations. It allows coupling neurons to a set of target labels or sets of descriptive attributes, relating layers within a single DLM or associating different DLMs. The proposed framework is independent of the artificial neural network architecture and can work with more complex target labels (e.g. multi-label or multi-target scenario). Additionally, it can emulate both pedagogical and decompositional approach to rule extraction. The aforementioned properties of the proposed framework can increase explainability and interpretability of arbitrary DLMs by providing different information compared to existing explainable-AI approaches.
- Abstract(参考訳): ディープラーニングモデル(DLM)は、構造化データと非構造化データの両方で、ますます高いパフォーマンスを達成する。
彼らは機械学習の様々な領域への適用性を著しく拡張した。
予測、パターンの検出、新しいデータ生成の成功は、科学と産業に大きな影響を与えた。
これらの成果にもかかわらず、DLMは巨大であるため説明が難しい。
そこで本研究では,DLMの書き直しによる説明・関連のための新しいフレームワークを提案する。
このフレームワークは、任意のDLMのコホート解析を可能にし、神経細胞活性化の統計的に重要な再記述を同定する。
これは、単一のDLM内の層を関連づけたり、異なるDLMを関連付ける、一連の標的ラベルまたは記述的属性のセットに結合することを可能にする。
提案するフレームワークは、人工知能ニューラルネットワークアーキテクチャとは独立しており、より複雑なターゲットラベル(例えば、マルチラベルやマルチターゲットシナリオ)を扱うことができる。
さらに、規則抽出に対する教育的アプローチと分解的アプローチの両方をエミュレートすることができる。
上述したフレームワークの特性は、既存の説明可能なAIアプローチと異なる情報を提供することにより、任意のDLMの説明可能性や解釈可能性を高めることができる。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery [10.573861741540853]
KG Structure as Promptは、共通ノードやメタパスなどの知識グラフから構造情報を即時学習に統合するための新しいアプローチである。
バイオメディカルデータセットとオープンドメインデータセットの3種類の実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-26T14:07:00Z) - Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
構造Xは5つの重要なフェーズを通して動作する:read-model-fill-reflect-reason'
構造化データをグラフ埋め込みを用いて位相空間にエンコードする。
行方不明のエンティティ情報を知識検索モジュールで埋める。
最後のフェーズでは、選択したトークンでトポロジネットワークを構築する。
論文 参考訳(メタデータ) (2024-07-17T13:06:25Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - GenURL: A General Framework for Unsupervised Representation Learning [58.59752389815001]
教師なし表現学習(URL)は、教師なしの高次元データのコンパクトな埋め込みを学習する。
本稿では,様々なURLタスクにスムーズに適応可能な類似性ベースの統合URLフレームワークGenURLを提案する。
実験により、GenURLは、自己教師付き視覚学習、無教師付き知識蒸留(KD)、グラフ埋め込み(GE)、次元縮小において、一貫した最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-27T16:24:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。