LEO-Split: A Semi-Supervised Split Learning Framework over LEO Satellite Networks
- URL: http://arxiv.org/abs/2501.01293v1
- Date: Thu, 02 Jan 2025 15:19:16 GMT
- Title: LEO-Split: A Semi-Supervised Split Learning Framework over LEO Satellite Networks
- Authors: Zheng Lin, Yuxin Zhang, Zhe Chen, Zihan Fang, Cong Wu, Xianhao Chen, Yue Gao, Jun Luo,
- Abstract summary: We propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges.
Our framework achieves superior performance compared to state-ofthe-art benchmarks.
- Score: 19.596449467255095
- License:
- Abstract: Recently, the increasing deployment of LEO satellite systems has enabled various space analytics (e.g., crop and climate monitoring), which heavily relies on the advancements in deep learning (DL). However, the intermittent connectivity between LEO satellites and ground station (GS) significantly hinders the timely transmission of raw data to GS for centralized learning, while the scaled-up DL models hamper distributed learning on resource-constrained LEO satellites. Though split learning (SL) can be a potential solution to these problems by partitioning a model and offloading primary training workload to GS, the labor-intensive labeling process remains an obstacle, with intermittent connectivity and data heterogeneity being other challenges. In this paper, we propose LEO-Split, a semi-supervised (SS) SL design tailored for satellite networks to combat these challenges. Leveraging SS learning to handle (labeled) data scarcity, we construct an auxiliary model to tackle the training failure of the satellite-GS non-contact time. Moreover, we propose a pseudo-labeling algorithm to rectify data imbalances across satellites. Lastly, an adaptive activation interpolation scheme is devised to prevent the overfitting of server-side sub-model training at GS. Extensive experiments with real-world LEO satellite traces (e.g., Starlink) demonstrate that our LEO-Split framework achieves superior performance compared to state-ofthe-art benchmarks.
Related papers
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
This paper proposes a novel FL-SEC framework that empowers satellites to execute large-scale machine learning (ML) tasks onboard efficiently.
Key components include personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images, and orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station.
Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
arXiv Detail & Related papers (2024-01-28T02:01:26Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation [12.489681058742358]
We have proposed a collaborative federated learning for low Earth orbit (FELLO)
We allocate the entire process on LEOs with low payload inter-satellite transmissions, whilst the low-delay terrestrial gateway server (GS) only takes care for initial signal controlling.
The proposed FELLO outperforms the conventional centralized and distributed architectures with higher classification accuracy as well as comparably lower latency of joint communication and computing.
arXiv Detail & Related papers (2023-03-25T04:24:16Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
Satellite edge computing (SEC) allows each satellite to train an ML model onboard and uploads only the model to the ground station.
This paper proposes FedLEO, a novel federated learning (FL) framework that overcomes the limitation (slow convergence) of existing FL-based solutions.
Our results show that FedLEO drastically expedites FL convergence, without sacrificing -- in fact it considerably increases -- the model accuracy.
arXiv Detail & Related papers (2023-02-27T00:32:01Z) - Decoupled Adversarial Contrastive Learning for Self-supervised
Adversarial Robustness [69.39073806630583]
Adversarial training (AT) for robust representation learning and self-supervised learning (SSL) for unsupervised representation learning are two active research fields.
We propose a two-stage framework termed Decoupled Adversarial Contrastive Learning (DeACL)
arXiv Detail & Related papers (2022-07-22T06:30:44Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years.
To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) is not desirable.
We show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels.
arXiv Detail & Related papers (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.