論文の概要: Survey on safe robot control via learning
- arxiv url: http://arxiv.org/abs/2501.01432v1
- Date: Mon, 16 Dec 2024 21:04:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-12 04:13:43.099300
- Title: Survey on safe robot control via learning
- Title(参考訳): 学習による安全ロボット制御に関する調査研究
- Authors: Bassel El Mabsout,
- Abstract要約: 本研究は, 安全ロボット学習の現場を探索し, 厳密な安全制約と高性能制御のバランスをとる方法を検討する。
古典的な制御手法、学習に基づくアプローチ、組込みシステム設計を調べることで、複雑な運用環境全体にわたって最適な性能を維持しながら、有害な状態を防ぐためにロボットシステムをいかに開発できるかを理解することを目指す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Control systems are critical to modern technological infrastructure, spanning industries from aerospace to healthcare. This survey explores the landscape of safe robot learning, investigating methods that balance high-performance control with rigorous safety constraints. By examining classical control techniques, learning-based approaches, and embedded system design, the research seeks to understand how robotic systems can be developed to prevent hazardous states while maintaining optimal performance across complex operational environments.
- Abstract(参考訳): 制御システムは、航空宇宙から医療まで、産業にまたがる現代の技術インフラにとって重要なものである。
本研究は, 安全ロボット学習の現場を探索し, 厳密な安全制約と高性能制御のバランスをとる方法を検討する。
古典的な制御手法、学習に基づくアプローチ、組込みシステム設計を調べることで、複雑な運用環境全体にわたって最適な性能を維持しながら、有害な状態を防ぐためにロボットシステムをいかに開発できるかを理解することを目指す。
関連論文リスト
- Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning [20.158498233576143]
キノダイナミック制約の下での軌道計画は、高度なロボティクス応用の基礎となる。
キノダイナミックプランニングの最近の進歩は、複雑な制約の下で複雑な動きを学習・計画技術が生成できることを実証している。
本稿では,学習から計画までの手法と強化学習を組み合わせることで,動作プリミティブのブラックボックス学習と最適化の新たな統合を実現する。
論文 参考訳(メタデータ) (2024-08-26T07:44:53Z) - ABNet: Attention BarrierNet for Safe and Scalable Robot Learning [58.4951884593569]
バリアベースの手法は、安全なロボット学習における主要なアプローチの1つである。
本稿では,より大規模な基本安全モデルを段階的に構築するスケーラブルなAttention BarrierNet(ABNet)を提案する。
2次元ロボット障害物回避、安全なロボット操作、視覚に基づくエンドツーエンド自動運転におけるABNetの強みを実証する。
論文 参考訳(メタデータ) (2024-06-18T19:37:44Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
本稿では,大規模言語モデルとERCP(Embodied Robotic Control Prompts)とEKG(Embodied Knowledge Graphs)との新たな統合を提案する。
ERCPは、LLMが安全かつ正確な応答を生成するための事前定義された命令として設計されている。
EKGは、ロボットの動作が安全プロトコルと継続的に一致していることを保証する包括的な知識基盤を提供する。
論文 参考訳(メタデータ) (2024-05-28T05:50:25Z) - Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications [21.98309272057848]
本稿では,学習に基づくロボットシステムに対して,複雑な安全制約を原則的に課す方法について述べる。
我々のアプローチは、安全ロボット構成の集合を表すConstraint Manifoldの概念に基づいている。
実世界のロボットエアホッケータスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-04-13T20:55:15Z) - A Model Based Framework for Testing Safety and Security in Operational
Technology Environments [0.46040036610482665]
本稿では,テスト中のシステムの安全性とセキュリティの挙動を分析するための有望な手法として,モデルに基づくテスト手法を提案する。
基盤となるフレームワークの構造は、運用技術環境のテストにおいて重要な要素に従って、4つの部分に分けられる。
論文 参考訳(メタデータ) (2023-06-22T05:37:09Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Safe Learning in Robotics: From Learning-Based Control to Safe
Reinforcement Learning [3.9258421820410225]
我々は、機械学習を用いて、不確実性の下で安全な意思決定を実現するための最近の進歩についてレビューする。
不安定なダイナミクスを学習することで、パフォーマンスを安全に向上する学習ベースの制御アプローチ。
今後数年間、ロボット学習の分野を牽引するオープンな課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2021-08-13T14:22:02Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。