論文の概要: MIRAGE: Exploring How Large Language Models Perform in Complex Social Interactive Environments
- arxiv url: http://arxiv.org/abs/2501.01652v1
- Date: Fri, 03 Jan 2025 06:07:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:49.979390
- Title: MIRAGE: Exploring How Large Language Models Perform in Complex Social Interactive Environments
- Title(参考訳): MIRAGE: 複雑なソーシャル対話環境における大規模言語モデルの性能を探る
- Authors: Cai Yin, Gu Zhouhong, Du Zhaohan, Ye Zheyu, Cao Shaosheng, Xu Yiqian, Feng Hongwei, Chen Ping,
- Abstract要約: 本稿では,MIRAGE(Multiverse Interactive Role-play Ability General Evaluation)を紹介する。
MIRAGEは、殺人ミステリーゲームを通じて高度な人間の行動を描写する大規模言語モデルの能力を評価するために設計されたフレームワークである。
我々の実験は、GPT-4のような人気モデルでさえ、MIRAGEが提示する複雑さをナビゲートする上で大きな課題に直面していることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities in environmental perception, reasoning-based decision-making, and simulating complex human behaviors, particularly in interactive role-playing contexts. This paper introduces the Multiverse Interactive Role-play Ability General Evaluation (MIRAGE), a comprehensive framework designed to assess LLMs' proficiency in portraying advanced human behaviors through murder mystery games. MIRAGE features eight intricately crafted scripts encompassing diverse themes and styles, providing a rich simulation. To evaluate LLMs' performance, MIRAGE employs four distinct methods: the Trust Inclination Index (TII) to measure dynamics of trust and suspicion, the Clue Investigation Capability (CIC) to measure LLMs' capability of conducting information, the Interactivity Capability Index (ICI) to assess role-playing capabilities and the Script Compliance Index (SCI) to assess LLMs' capability of understanding and following instructions. Our experiments indicate that even popular models like GPT-4 face significant challenges in navigating the complexities presented by the MIRAGE. The datasets and simulation codes are available in \href{https://github.com/lime728/MIRAGE}{github}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、環境認識、推論に基づく意思決定、複雑な人間の行動、特に対話的なロールプレイングの文脈において顕著な能力を示す。
本稿では,殺人ミステリーゲームによる高度な人間行動の描写におけるLLMの熟練度を評価するための総合的なフレームワークであるMIRAGEを紹介する。
MIRAGEは、様々なテーマとスタイルを含む8つの複雑なスクリプトを備えており、豊かなシミュレーションを提供している。
信頼インクリエーション指標(TII)は信頼と疑念のダイナミクスを計測し、CIC(Clue Investigation Capability)は情報伝達能力の測定を行い、ICI(Interactive Capability Index)はロールプレイング能力の評価を行い、SCI(Script Compliance Index)はLLMの理解と追跡の能力を評価する。
我々の実験は、GPT-4のような人気モデルでさえ、MIRAGEが提示する複雑さをナビゲートする上で大きな課題に直面していることを示している。
データセットとシミュレーションコードは \href{https://github.com/lime728/MIRAGE}{github} で公開されている。
関連論文リスト
- Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
本稿では,大規模言語モデル(LLM)を評価するためのベンチマークフレームワークを提案する。
生成エージェントシミュレーションを統合して、情報抽出、コンテキスト認識、適応エンゲージメントといった重要次元のパフォーマンスを評価する。
その結果,不明瞭な応答を扱う場合,適応戦略によりデータの抽出精度が向上することが示唆された。
論文 参考訳(メタデータ) (2025-02-04T15:47:47Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Probing Ranking LLMs: Mechanistic Interpretability in Information Retrieval [22.875174888476295]
我々は最先端の微調整型変圧器ネットワークの動作について検討する。
我々のアプローチは、LLM内のニューロンの探索に基づく層間層解析である。
ネットワークのアクティベーションの中で、既知の人間工学的・意味的な特徴の個人またはグループを特定する。
論文 参考訳(メタデータ) (2024-10-24T08:20:10Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とLLMのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
データサイエンスタスクにコードインタプリタを利用するLLMの能力を総合的に評価する,CIBenchという対話型評価フレームワークを提案する。
評価データセットは,LLM-人的協調手法を用いて構築され,連続的かつ対話的なIPythonセッションを活用することによって,実際のワークフローをシミュレートする。
コードインタプリタの利用において, CIBench 上で 24 個の LLM の能力を解析し, 将来の LLM に対する貴重な洞察を提供するため, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2024-07-15T07:43:55Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Can large language models explore in-context? [87.49311128190143]
単純なマルチアームバンディット環境において,エージェントとして大規模言語モデルをデプロイする。
モデルが実質的な介入なしには、探索にしっかりと関わっていないことが分かっています。
論文 参考訳(メタデータ) (2024-03-22T17:50:43Z) - On the Decision-Making Abilities in Role-Playing using Large Language
Models [6.550638804145713]
大型言語モデル(LLM)はロールプレイングタスクにますます活用されている。
本稿では,LLMのポストロールプレイングにおける意思決定能力の評価に焦点をあてる。
論文 参考訳(メタデータ) (2024-02-29T02:22:23Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。