論文の概要: AgentRefine: Enhancing Agent Generalization through Refinement Tuning
- arxiv url: http://arxiv.org/abs/2501.01702v2
- Date: Mon, 24 Feb 2025 12:42:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:49:38.687006
- Title: AgentRefine: Enhancing Agent Generalization through Refinement Tuning
- Title(参考訳): AgentRefine: Refinement Tuningによるエージェントの一般化を促進する
- Authors: Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang, Jingang Wang, Xunliang Cai, Weiran Xu,
- Abstract要約: LLM(Large Language Model)ベースのエージェントは、人間のような複雑なタスクを実行する能力を示した。
オープンソースLLMとGPTシリーズのような商用モデルの間にはまだ大きなギャップがある。
本稿では,命令チューニングによるLLMのエージェント一般化機能の改善に焦点をあてる。
- 参考スコア(独自算出の注目度): 28.24897427451803
- License:
- Abstract: Large Language Model (LLM) based agents have proved their ability to perform complex tasks like humans. However, there is still a large gap between open-sourced LLMs and commercial models like the GPT series. In this paper, we focus on improving the agent generalization capabilities of LLMs via instruction tuning. We first observe that the existing agent training corpus exhibits satisfactory results on held-in evaluation sets but fails to generalize to held-out sets. These agent-tuning works face severe formatting errors and are frequently stuck in the same mistake for a long while. We analyze that the poor generalization ability comes from overfitting to several manual agent environments and a lack of adaptation to new situations. They struggle with the wrong action steps and can not learn from the experience but just memorize existing observation-action relations. Inspired by the insight, we propose a novel AgentRefine framework for agent-tuning. The core idea is to enable the model to learn to correct its mistakes via observation in the trajectory. Specifically, we propose an agent synthesis framework to encompass a diverse array of environments and tasks and prompt a strong LLM to refine its error action according to the environment feedback. AgentRefine significantly outperforms state-of-the-art agent-tuning work in terms of generalization ability on diverse agent tasks. It also has better robustness facing perturbation and can generate diversified thought in inference. Our findings establish the correlation between agent generalization and self-refinement and provide a new paradigm for future research.
- Abstract(参考訳): LLM(Large Language Model)ベースのエージェントは、人間のような複雑なタスクを実行する能力を示した。
しかし、オープンソースLLMとGPTシリーズのような商用モデルの間にはまだ大きなギャップがある。
本稿では,命令チューニングによるLLMのエージェント一般化機能の改善に焦点をあてる。
まず,既存のエージェント・トレーニング・コーパスはホールドイン評価セットに満足な結果を示すが,ホールドアウト・セットへの一般化には失敗する。
これらのエージェントチューニング作業は、厳しいフォーマットエラーに直面し、長い間同じ間違いに悩まされることが多い。
我々は,複数の手動エージェント環境への過度な適合と,新しい状況への適応の欠如から,一般化能力の貧弱さを分析した。
彼らは間違った行動手順で苦労し、経験から学ぶことができず、既存の観察と行動の関係を記憶するだけです。
この知見に触発されて,エージェントチューニングのための新しいAgentRefineフレームワークを提案する。
中心となる考え方は、モデルが軌道上の観察を通してミスを修正することを学べるようにすることである。
具体的には,多様な環境やタスクを包含するエージェント合成フレームワークを提案し,環境フィードバックに応じて強力なLCMにエラー処理を洗練させる。
AgentRefineは、多様なエージェントタスクの一般化能力の観点から、最先端のエージェントチューニング作業よりも大幅に優れています。
摂動に面した堅牢性も向上し、推論において多彩な思考を生み出すことができる。
本研究は,エージェントの一般化と自己精製の相関性を確立し,今後の研究に新たなパラダイムを提供する。
関連論文リスト
- Free Agent in Agent-Based Mixture-of-Experts Generative AI Framework [0.0]
強化学習自由エージェント (Reinforcement Learning Free Agent, RLFA) アルゴリズムは、永続的な過パフォーマンスを示すエージェントを検出し、除去するための報酬に基づくメカニズムを導入する。
第一のユースケースは不正検出であり、RLFAは事前に設定された閾値以下で検出精度が低下するエージェントを即座に交換する。
このダイナミックでフリーの緊急サイクルは、持続的な正確さ、出現する脅威への迅速な適応、進行中の運用に対する最小限の中断を保証する。
論文 参考訳(メタデータ) (2025-01-29T13:00:22Z) - Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training [18.896813839389893]
本稿では,言語エージェントをオンザフライでリフレクション可能な反復型自己学習フレームワーク,Agent-Rを提案する。
Agent-Rは、正しさに基づいてアクションを報酬または罰揚する従来の方法とは異なり、MCTSを活用して、誤ったトラジェクトリから正しいトラジェクトリを復元するトレーニングデータを構築する。
以上の結果から,Agent-Rは連続的にエラーから回復し,タイムリーなエラー訂正を可能にすることが示唆された。
論文 参考訳(メタデータ) (2025-01-20T11:46:04Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
recurrent meta reinforcement learning (meta-rl)エージェントは「学習アルゴリズムの学習」を目的としてrecurrent neural network (rnn)を使用するエージェントである。
部分観測可能なマルコフ決定プロセス(POMDP)フレームワークを用いてメタRL問題を再構成することにより,これらのエージェントの内部動作機構を明らかにする。
論文 参考訳(メタデータ) (2021-04-29T20:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。