GAF-FusionNet: Multimodal ECG Analysis via Gramian Angular Fields and Split Attention
- URL: http://arxiv.org/abs/2501.01960v1
- Date: Sat, 07 Dec 2024 07:02:16 GMT
- Title: GAF-FusionNet: Multimodal ECG Analysis via Gramian Angular Fields and Split Attention
- Authors: Jiahao Qin, Feng Liu,
- Abstract summary: This paper introduces a novel framework for ECG classification that integrates time-series analysis with image-based representation.
We evaluate ECG-FusionNet on three diverse datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database.
Results demonstrate significant improvements over state-of-the-art methods, with our model achieving 94.5%, 96.9%, and 99.6% accuracy on the respective datasets.
- Score: 4.673285689826945
- License:
- Abstract: Electrocardiogram (ECG) analysis plays a crucial role in diagnosing cardiovascular diseases, but accurate interpretation of these complex signals remains challenging. This paper introduces a novel multimodal framework(GAF-FusionNet) for ECG classification that integrates time-series analysis with image-based representation using Gramian Angular Fields (GAF). Our approach employs a dual-layer cross-channel split attention module to adaptively fuse temporal and spatial features, enabling nuanced integration of complementary information. We evaluate GAF-FusionNet on three diverse ECG datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database. Results demonstrate significant improvements over state-of-the-art methods, with our model achieving 94.5\%, 96.9\%, and 99.6\% accuracy on the respective datasets. Our code will soon be available at https://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
We introduce an ECG Foundation Model (ECGFounder) to broaden the diagnostic capabilities of ECG analysis.
ECGFounder was trained on over 10 million ECGs with 150 label categories from the Harvard-Emory ECG Database.
It achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses.
arXiv Detail & Related papers (2024-10-05T12:12:02Z) - ECG-FM: An Open Electrocardiogram Foundation Model [3.611746032873298]
We present ECG-FM, an open foundation model for ECG analysis.
ECG-FM adopts a transformer-based architecture and is pretrained on 2.5 million samples.
We show how its command of contextual information results in strong performance, rich pretrained embeddings, and reliable interpretability.
arXiv Detail & Related papers (2024-08-09T17:06:49Z) - GL-Fusion: Global-Local Fusion Network for Multi-view Echocardiogram
Video Segmentation [15.8851111502473]
We propose a novel Gobal-Local fusion (GL-Fusion) network to jointly utilize multi-view information globally and locally.
A Multi-view Global-based Fusion Module (MGFM) is proposed to extract global context information.
A Multi-view Local-based Fusion Module (MLFM) is designed to extract correlations of cardiac structures from different views.
arXiv Detail & Related papers (2023-09-20T08:43:40Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
We propose two computationally efficient multimodal fusion frameworks for ECG heart beat classification.
In MFF, we extracted features from penultimate layer of CNNs and fused them to get unique and interdependent information.
We achieved classification accuracy of 99.7% and 99.2% on arrhythmia and MI classification, respectively.
arXiv Detail & Related papers (2021-07-21T03:48:35Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
We develop a multi-scale deep residual network for the ECG signal classification task.
We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix.
Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset.
arXiv Detail & Related papers (2020-12-10T08:37:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.