Advancing Pancreatic Cancer Prediction with a Next Visit Token Prediction Head on top of Med-BERT
- URL: http://arxiv.org/abs/2501.02044v1
- Date: Fri, 03 Jan 2025 18:32:05 GMT
- Title: Advancing Pancreatic Cancer Prediction with a Next Visit Token Prediction Head on top of Med-BERT
- Authors: Jianping He, Laila Rasmy, Degui Zhi, Cui Tao,
- Abstract summary: We reformulated the disease binary prediction task into a token prediction task and a next visit mask token prediction task to align with Med-BERT's pretraining task format.
The reformulation of the task into a token prediction task, referred to as Med-BERT-Sum, demonstrates slightly superior performance in both few-shot scenarios and larger data samples.
- Score: 5.929423279830467
- License:
- Abstract: Background: Recently, numerous foundation models pretrained on extensive data have demonstrated efficacy in disease prediction using Electronic Health Records (EHRs). However, there remains some unanswered questions on how to best utilize such models especially with very small fine-tuning cohorts. Methods: We utilized Med-BERT, an EHR-specific foundation model, and reformulated the disease binary prediction task into a token prediction task and a next visit mask token prediction task to align with Med-BERT's pretraining task format in order to improve the accuracy of pancreatic cancer (PaCa) prediction in both few-shot and fully supervised settings. Results: The reformulation of the task into a token prediction task, referred to as Med-BERT-Sum, demonstrates slightly superior performance in both few-shot scenarios and larger data samples. Furthermore, reformulating the prediction task as a Next Visit Mask Token Prediction task (Med-BERT-Mask) significantly outperforms the conventional Binary Classification (BC) prediction task (Med-BERT-BC) by 3% to 7% in few-shot scenarios with data sizes ranging from 10 to 500 samples. These findings highlight that aligning the downstream task with Med-BERT's pretraining objectives substantially enhances the model's predictive capabilities, thereby improving its effectiveness in predicting both rare and common diseases. Conclusion: Reformatting disease prediction tasks to align with the pretraining of foundation models enhances prediction accuracy, leading to earlier detection and timely intervention. This approach improves treatment effectiveness, survival rates, and overall patient outcomes for PaCa and potentially other cancers.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Predicting infections in the Covid-19 pandemic -- lessons learned [5.981641988736108]
In this paper, we start from prediction algorithms proposed for XPrize Pandemic Response Challenge and consider several directions that might allow their improvement.
We find that augmenting the algorithms with additional information about the culture of the modeled region can improve the performance for short term predictions.
The accuracy of medium-term predictions is still very low and a significant amount of future research is needed to make such models a reliable component of a public policy toolbox.
arXiv Detail & Related papers (2021-12-02T20:20:46Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
The impact of machine learning models on healthcare will depend on the degree of trust that healthcare professionals place in the predictions made by these models.
We present a method to provide people with clinical expertise with domain-relevant evidence about why a prediction should be trusted.
arXiv Detail & Related papers (2021-03-04T00:26:32Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Prediction-Coherent LSTM-based Recurrent Neural Network for Safer
Glucose Predictions in Diabetic People [4.692400531340393]
We propose a LSTM-based recurrent neural network architecture and loss function that enhance the stability of predictions.
The study is conducted on type 1 and type 2 diabetic people, with a focus on predictions made 30-minutes ahead of time.
arXiv Detail & Related papers (2020-09-08T13:14:08Z) - Backtesting the predictability of COVID-19 [0.0]
We use historical data of COVID-19 infections from 253 regions from the period of 22nd January 2020 until 22nd June 2020.
Prediction errors are substantially higher in early stages of the pandemic, resulting from limited data.
The more confirmed cases a country exhibits at any point in time, the lower the error in forecasting future confirmed cases.
arXiv Detail & Related papers (2020-07-22T13:18:00Z) - Med-BERT: pre-trained contextualized embeddings on large-scale
structured electronic health records for disease prediction [12.669003066030697]
We propose Med-BERT, which adapts the BERT framework for pre-training contextualized embedding models on structured diagnosis data from 28,490,650 patients EHR dataset.
Med-BERT substantially improves prediction accuracy, boosting the area under receiver operating characteristics curve (AUC) by 2.02-7.12%.
In particular, pre-trained Med-BERT substantially improves the performance of tasks with very small fine-tuning training sets (300-500 samples) boosting the AUC by more than 20% or equivalent to the AUC of 10 times larger training set.
arXiv Detail & Related papers (2020-05-22T05:07:17Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.