論文の概要: Majorization-Minimization Dual Stagewise Algorithm for Generalized Lasso
- arxiv url: http://arxiv.org/abs/2501.02197v1
- Date: Sat, 04 Jan 2025 05:20:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:23.106178
- Title: Majorization-Minimization Dual Stagewise Algorithm for Generalized Lasso
- Title(参考訳): 一般化ラッソの最小化二段階アルゴリズム
- Authors: Jianmin Chen, Kun Chen,
- Abstract要約: 本稿では,一般化ラッソ問題の全解経路を効率的に追従するために,一般化最小化二段階法(MM-DUST)アルゴリズムを提案する。
我々は,MM-DUSTの計算複雑性を解析し,近似解経路の一様収束性を確立する。
- 参考スコア(独自算出の注目度): 2.1066879371176395
- License:
- Abstract: The generalized lasso is a natural generalization of the celebrated lasso approach to handle structural regularization problems. Many important methods and applications fall into this framework, including fused lasso, clustered lasso, and constrained lasso. To elevate its effectiveness in large-scale problems, extensive research has been conducted on the computational strategies of generalized lasso. However, to our knowledge, most studies are under the linear setup, with limited advances in non-Gaussian and non-linear models. We propose a majorization-minimization dual stagewise (MM-DUST) algorithm to efficiently trace out the full solution paths of the generalized lasso problem. The majorization technique is incorporated to handle different convex loss functions through their quadratic majorizers. Utilizing the connection between primal and dual problems and the idea of ``slow-brewing'' from stagewise learning, the minimization step is carried out in the dual space through a sequence of simple coordinate-wise updates on the dual coefficients with a small step size. Consequently, selecting an appropriate step size enables a trade-off between statistical accuracy and computational efficiency. We analyze the computational complexity of MM-DUST and establish the uniform convergence of the approximated solution paths. Extensive simulation studies and applications with regularized logistic regression and Cox model demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): 一般化ラッソ(英: generalized lasso)は、構造正則化問題を扱うための有名なラッソアプローチの自然な一般化である。
多くの重要な方法やアプリケーションは、溶かされたラッソ、クラスタ化されたラッソ、制約されたラッソなど、このフレームワークに該当する。
大規模問題におけるその有効性を高めるため、一般化ラッソの計算戦略について広範な研究がなされている。
しかしながら、我々の知る限り、ほとんどの研究は、非ガウスモデルと非線型モデルにおいて限定的な進歩を伴い、線形的な設定の下にある。
本稿では,一般化ラッソ問題の全解経路を効率的に追従するために,一般化最小化二段階法(MM-DUST)アルゴリズムを提案する。
二次化法は, 二次化器を介して異なる凸損失関数を扱うために組み込まれている。
一次問題と双対問題との接続と「スロー醸造」の概念を段階学習から利用し、最小化ステップを二乗空間において、小さなステップサイズで二乗係数の単純な座標ワイド更新のシーケンスを通して行う。
これにより、適切なステップサイズを選択することで、統計的精度と計算効率のトレードオフが可能になる。
我々は,MM-DUSTの計算複雑性を解析し,近似解経路の一様収束性を確立する。
正規化ロジスティック回帰とコックスモデルを用いた大規模シミュレーション研究と応用により,提案手法の有効性が示された。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - Moreau Envelope for Nonconvex Bi-Level Optimization: A Single-loop and Hessian-free Solution Strategy [45.982542530484274]
大規模非ビレベル問題(BLO)は、機械学習にますます適用されている。
これらの課題には、計算効率の確保と理論的保証が伴う。
論文 参考訳(メタデータ) (2024-05-16T09:33:28Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - Efficient Alternating Minimization Solvers for Wyner Multi-View
Unsupervised Learning [0.0]
本稿では,計算効率のよい解法の開発を可能にする2つの新しい定式化法を提案する。
提案した解法は, 計算効率, 理論的収束保証, ビュー数による局所最小値複雑性, 最先端技術と比較して, 例外的な精度を提供する。
論文 参考訳(メタデータ) (2023-03-28T10:17:51Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
統計的問題をスパース係数回帰として定式化し、分割コンカレントアプローチでそれに取り組む。
第1段階分割では、タスクを1組の同時並列推定(CURE)問題に単純化するための2つの潜時並列アプローチについて検討する。
第2段階分割では、CUREの全解を効率的に追跡するために、一連の単純な増分経路からなる段階学習手法を革新する。
論文 参考訳(メタデータ) (2020-03-17T19:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。