論文の概要: LLMzSzŁ: a comprehensive LLM benchmark for Polish
- arxiv url: http://arxiv.org/abs/2501.02266v1
- Date: Sat, 04 Jan 2025 12:04:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:26.224201
- Title: LLMzSzŁ: a comprehensive LLM benchmark for Polish
- Title(参考訳): LLMzSz':ポーランドの総合的なLLMベンチマーク
- Authors: Krzysztof Jassem, Michał Ciesiółka, Filip Graliński, Piotr Jabłoński, Jakub Pokrywka, Marek Kubis, Monika Jabłońska, Ryszard Staruch,
- Abstract要約: この記事では、ポーランド語に関するこの規模での最初の包括的なベンチマークについて紹介する。
これは、ポーランド中央試験委員会のアーカイブから抽出された学術試験と専門試験の両方を含む、ポーランドの国家試験の一貫性のあるコレクションに基づいている。
そのほか、約19万のクローズドエンドの質問で構成されている。
- 参考スコア(独自算出の注目度): 1.147194267316659
- License:
- Abstract: This article introduces the first comprehensive benchmark for the Polish language at this scale: LLMzSz{\L} (LLMs Behind the School Desk). It is based on a coherent collection of Polish national exams, including both academic and professional tests extracted from the archives of the Polish Central Examination Board. It covers 4 types of exams, coming from 154 domains. Altogether, it consists of almost 19k closed-ended questions. We investigate the performance of open-source multilingual, English, and Polish LLMs to verify LLMs' abilities to transfer knowledge between languages. Also, the correlation between LLMs and humans at model accuracy and exam pass rate levels is examined. We show that multilingual LLMs can obtain superior results over monolingual ones; however, monolingual models may be beneficial when model size matters. Our analysis highlights the potential of LLMs in assisting with exam validation, particularly in identifying anomalies or errors in examination tasks.
- Abstract(参考訳): この記事では、ポーランド語に関するこの規模での最初の包括的なベンチマークについて紹介する。
これは、ポーランド中央試験委員会のアーカイブから抽出された学術試験と専門試験の両方を含む、ポーランドの国家試験の一貫性のあるコレクションに基づいている。
試験対象は154藩の4種類。
そのほか、約19万のクローズドエンドの質問で構成されている。
オープンソース多言語,英語,ポーランド語LLMの性能を検証し,LLMが言語間で知識を伝達する能力を検証する。
また,LLMとヒトのモデル精度と試験合格率の相関について検討した。
多言語LLMは単言語モデルよりも優れた結果が得られるが、モデルサイズが重要な場合、単言語モデルの方が有益である可能性がある。
本分析は, LLMが検査検証を支援する可能性, 特に検査作業における異常やエラーを識別する可能性を強調した。
関連論文リスト
- Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
OMGEvalは、オープンソースの多言語生成テストセットであり、異なる言語におけるLLMの能力を評価することができる。
各言語について、OMGEvalは804のオープンエンド質問を提供し、LLMの重要な機能を幅広くカバーしている。
具体的には、OMGEvalの現在のバージョンには5つの言語(Zh, Ru, Fr, Es, Ar)が含まれている。
論文 参考訳(メタデータ) (2024-02-21T04:42:41Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction
Following: A Case Study of Arabic [1.0878040851638]
GPT-4を英語とアラビア語の問合せのための一様評価器として使用し、様々なオープンエンドタスクにおけるLCMの性能を評価し比較する。
マルチリンガルおよびマルチターンデータセットを用いた微調整ベースモデルは、スクラッチからトレーニングされたマルチリンガルデータと競合する可能性がある。
論文 参考訳(メタデータ) (2023-10-23T11:40:04Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z) - A Primer on Pretrained Multilingual Language Models [18.943173499882885]
MLLM(Multilingual Language Models)は、多数の言語に事前学習の能力をもたらすための実行可能な選択肢として登場した。
本報告では,MLLMに関する研究分野について概説する。
論文 参考訳(メタデータ) (2021-07-01T18:01:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。