Bidirectional controlled quantum state preparation in high-dimensional quantum system
- URL: http://arxiv.org/abs/2501.02986v1
- Date: Mon, 06 Jan 2025 12:54:02 GMT
- Title: Bidirectional controlled quantum state preparation in high-dimensional quantum system
- Authors: Si-Qi Du, Hai-Rui Wei,
- Abstract summary: High-dimensional quantum system exhibits unique advantages over the qubit system in some quantum information processing tasks.
We present a program for implementing bidirectional deterministic controlled remote quantum state preparation.
The evaluation of the performance shows that if the quNit is encoded in the spatial mode of single photons, our scheme can be accomplished solely using only linear optical elements.
- Score: 0.0
- License:
- Abstract: High-dimensional quantum system exhibits unique advantages over the qubit system in some quantum information processing tasks. We present a program for implementing deterministic bidirectional controlled remote quantum state preparation (BCRSP) in arbitrary $N$-dimensional (quNit) system. By introducing two generalized Greenberger-Horne-Zeilinger (GHZ) states as quantum channels, two communication parties can simultaneously prepare a single-particle high-dimensional state at each other's site under the control of Charlie. Compared with the previous counterparts, the significant advantage of our scheme is that the high-dimensional CNOT operations are not required. Moreover, the performance our scheme are evaluated. The evaluation of the performance shows that if the quNit is encoded in the spatial mode of single photons, our scheme can be accomplished solely using only linear optical elements.
Related papers
- N-qubit universal quantum logic with a photonic qudit and O(N) linear optics elements [0.0]
High-dimensional quantum units of information, or qudits, can carry more than one quantum bit of information in a single degree of freedom.
We show that N-qubit states encoded in a single time-bin qudit can be arbitrarily and deterministically generated, manipulated and measured.
arXiv Detail & Related papers (2024-10-08T20:14:35Z) - Quantum Signal Processing with the one-dimensional quantum Ising model [0.0]
Quantum Signal Processing (QSP) has emerged as a promising framework to manipulate and determine properties of quantum systems.
We provide examples and applications of our approach in diverse fields ranging from space-time dual quantum circuits and quantum simulation, to quantum control.
arXiv Detail & Related papers (2023-09-08T18:01:37Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Multipartite High-dimensional Quantum State Engineering via Discrete
Time Quantum Walk [8.875659216970327]
We give two schemes for the engineering task of arbitrary quantum state in $c$-partite $d$-dimensional system.
A concrete example of preparing generalized Bell states is given to demonstrate the first scheme we proposed.
We also show how these schemes can be used to reduce the cost of long-distance quantum communication.
arXiv Detail & Related papers (2022-12-23T06:06:16Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Discrete-time quantum walk approach to high-dimensional quantum state
transfer and quantum routing [6.236377496735381]
We propose a class of quantum-walk architecture networks that admit the efficient routing of high-dimensional quantum states.
Perfect state transfer of an arbitrary unknown qudit state can be achieved between two arbitrary nodes via a one-dimensional lackadaisical discrete-time quantum walk.
arXiv Detail & Related papers (2021-08-10T21:15:41Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Demonstration of Efficient High-dimensional Quantum Gates
with Orbital Angular Momentum [4.685726479038803]
We experimentally demonstrate the four-dimensional X gate and its unique higher orders with the average conversion efficiency 93%.
Our work is an important step towards the goal of achieving arbitrary high-dimensional quantum circuit and paves a way for the implementation of high-dimensional quantum communication and computation.
arXiv Detail & Related papers (2020-10-11T15:20:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.