論文の概要: HonkaiChat: Companions from Anime that feel alive!
- arxiv url: http://arxiv.org/abs/2501.03277v1
- Date: Sun, 05 Jan 2025 13:02:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:49:54.114572
- Title: HonkaiChat: Companions from Anime that feel alive!
- Title(参考訳): 本界Chat: 生きていると感じたアニメとの相違!
- Authors: Yueze Liu, Yichi Zhang, Shaan Om Patel, Zhaoyang Zhu, Shilong Guo,
- Abstract要約: 本稿では,会話プロンプトに動的イベントを埋め込むことにより,制約に対処するイベント駆動対話フレームワークを提案する。
覚醒を減らしながら、会話のエンゲージメントと自然さを著しく向上させることが、イベント駆動のプロンプトによって示される。
- 参考スコア(独自算出の注目度): 6.523381601417928
- License:
- Abstract: Modern conversational agents, including anime-themed chatbots, are frequently reactive and personality-driven but fail to capture the dynamic nature of human interactions. We propose an event-driven dialogue framework to address these limitations by embedding dynamic events in conversation prompts and fine-tuning models on character-specific data. Evaluations on GPT-4 and comparisons with industry-leading baselines demonstrate that event-driven prompts significantly improve conversational engagement and naturalness while reducing hallucinations. This paper explores the application of this approach in creating lifelike chatbot interactions within the context of Honkai: Star Rail, showcasing the potential for dynamic event-based systems to transform role-playing and interactive dialogue.
- Abstract(参考訳): アニメをテーマにしたチャットボットを含む現代の会話エージェントは、しばしば反応性とパーソナリティによって駆動されるが、人間の相互作用の動的な性質を捉えることができない。
会話のプロンプトに動的イベントを埋め込んだり、文字固有のデータに微調整を施したりすることで、これらの制約に対処するイベント駆動対話フレームワークを提案する。
GPT-4の評価と、業界主導のベースラインとの比較により、覚醒を減らしながら、イベント駆動のプロンプトは会話のエンゲージメントと自然性を大幅に改善することが示された。
本論文は,本会の文脈における生活型チャットボットのインタラクション構築におけるこのアプローチの適用を考察し,役割プレイングと対話性に転換する動的イベントベースシステムの可能性を示す。
関連論文リスト
- REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
本稿では、21日間のメッセージアプリ対話のコーパスであるREALTALKを紹介する。
EI属性とペルソナの整合性を比較し,現実世界の対話による課題を理解する。
その結果,モデルでは対話履歴のみからユーザをシミュレートすることが困難であり,特定のユーザチャットの微調整はペルソナのエミュレーションを改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T20:29:01Z) - INFP: Audio-Driven Interactive Head Generation in Dyadic Conversations [11.101103116878438]
本稿では,Dyadic インタラクションのための新しい音声駆動型ヘッド生成フレームワーク INFP を提案する。
INFPは、モーションベースヘッドイミテーションステージとオーディオガイドモーションジェネレーションステージで構成される。
このような研究を円滑に進めるために,インターネットから収集したリッチな対話の大規模データセットであるDyConvを紹介した。
論文 参考訳(メタデータ) (2024-12-05T10:20:34Z) - Mixed-Session Conversation with Egocentric Memory [9.51807813140613]
現在の対話システムは、複数のパートナーを含む動的、連続的、長期的相互作用を複製することができない。
マルチセッション対話システムであるMixed-Session Conversationを導入する。
Egocentric Enhanced Mixed-Session Conversation Agent (EMMA) と呼ばれる新しいメモリ管理機構を備えた対話モデルを提案する。
論文 参考訳(メタデータ) (2024-10-03T14:06:43Z) - What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models [0.0]
本稿では,大規模言語モデル(LLM)を用いて動的かつ文脈的に適切な文字相互作用を生成する対話フィラーフレームワークを提案する。
The Final Fantasy VII Remake and Pokemonの環境でこのフレームワークをテストする。
本研究の目的は,よりニュアンスの高いフィラーダイアログ作成を支援することであり,それによってプレイヤーの没入感を高め,RPG体験の全般的向上を図ることである。
論文 参考訳(メタデータ) (2024-07-29T19:12:18Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - Dyadic Interaction Modeling for Social Behavior Generation [6.626277726145613]
ダイアディックインタラクションにおける3次元顔の動きを効果的に生成するための枠組みを提案する。
私たちのフレームワークの中心は、事前トレーニングアプローチであるDydic Interaction Modeling(DIM)です。
実験は、リスナー動作の生成において、我々のフレームワークが優れていることを示す。
論文 参考訳(メタデータ) (2024-03-14T03:21:33Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
我々は,複数文字と新しいオブジェクトベースインタラクション推定タスクとサポートデータセットからなる,立久間というベンチマークを導入する。
このデータセットは、ゲームプレイ中のリアルタイム通信からログデータをキャプチャし、多様な、接地された複雑なインタラクションを提供して、さらなる探索を行う。
本稿では,対話理解の強化に有効であることを示すため,簡単なプロンプトベースラインを提案し,その性能評価を行う。
論文 参考訳(メタデータ) (2023-07-24T07:40:59Z) - A Probabilistic Model Of Interaction Dynamics for Dyadic Face-to-Face
Settings [1.9544213396776275]
我々は,対面設定における対の参加者間の相互作用のダイナミクスを捉える確率論的モデルを開発した。
この相互作用エンコーディングは、あるエージェントの将来のダイナミクスを予測する際に、生成に影響を与えるために使用される。
我々のモデルは, 相互作用する力学に基づいて, モード間のデライン化に成功していることを示す。
論文 参考訳(メタデータ) (2022-07-10T23:31:27Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z) - Triangular Character Animation Sampling with Motion, Emotion, and
Relation [78.80083186208712]
本稿では,キャラクターの身体の動き,表情,社会的関係を関連づけることで,アニメーションのサンプリングと合成を行う新しい枠組みを提案する。
本手法は,3次元キャラクタアニメーションの自動生成,非プレーヤキャラクタ(NPC)間のインタラクションの合成,バーチャルリアリティ(VR)におけるマシン感情インテリジェンスの向上を支援するアニメーターを提供する。
論文 参考訳(メタデータ) (2022-03-09T18:19:03Z) - Will I Sound Like Me? Improving Persona Consistency in Dialogues through
Pragmatic Self-Consciousness [62.55060760615656]
一貫性に対処する最近のモデルは、しばしば追加の自然言語推論(NLI)ラベルでトレーニングするか、あるいは一貫性を維持するためにトレーニングされた追加モジュールを生成エージェントにアタッチする。
社会的認知と実用性に触発されて、私たちは既存の対話エージェントに、想像上のリスナーを通して、公的な自己意識を持たせました。
我々のアプローチは、Rational Speech Actsフレームワークに基づいて、会話エージェントに矛盾の発声を控えるように強制することができる。
論文 参考訳(メタデータ) (2020-04-13T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。