論文の概要: Detecting Defective Wafers Via Modular Networks
- arxiv url: http://arxiv.org/abs/2501.03368v1
- Date: Mon, 06 Jan 2025 20:11:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:47:07.504120
- Title: Detecting Defective Wafers Via Modular Networks
- Title(参考訳): モジュールネットワークによる欠陥ウェハの検出
- Authors: Yifeng Zhang, Bryan Baker, Shi Chen, Chao Zhang, Yu Huang, Qi Zhao, Sthitie Bom,
- Abstract要約: 本稿では,製造プロセスの構造を具現化した時系列段階データセットを用いて学習したモジュールネットワーク(MN)を提案する。
これはKQI予測をステージモジュールの組み合わせとして分解し、組成半導体製造をシミュレートする。
- 参考スコア(独自算出の注目度): 24.679212395163688
- License:
- Abstract: The growing availability of sensors within semiconductor manufacturing processes makes it feasible to detect defective wafers with data-driven models. Without directly measuring the quality of semiconductor devices, they capture the modalities between diverse sensor readings and can be used to predict key quality indicators (KQI, \textit{e.g.}, roughness, resistance) to detect faulty products, significantly reducing the capital and human cost in maintaining physical metrology steps. Nevertheless, existing models pay little attention to the correlations among different processes for diverse wafer products and commonly struggle with generalizability issues. To enable generic fault detection, in this work, we propose a modular network (MN) trained using time series stage-wise datasets that embodies the structure of the manufacturing process. It decomposes KQI prediction as a combination of stage modules to simulate compositional semiconductor manufacturing, universally enhancing faulty wafer detection among different wafer types and manufacturing processes. Extensive experiments demonstrate the usefulness of our approach, and shed light on how the compositional design provides an interpretable interface for more practical applications.
- Abstract(参考訳): 半導体製造プロセスにおけるセンサの可用性の向上により、データ駆動モデルによる欠陥ウエハの検出が容易になる。
半導体デバイスの品質を直接測定することなく、様々なセンサの読み取りのモダリティを捉えることができ、キー品質指標(KQI, \textit{e g }, 粗さ, 抵抗)を予測して欠陥製品を検出し、物理的メトロジーステップを維持する際の資本と人的コストを著しく削減することができる。
それでも、既存のモデルは様々なウェハ製品に対する異なるプロセス間の相関にはほとんど注意を払わず、一般的に一般化可能性の問題に苦しむ。
本研究では,本研究において,製造プロセスの構造を具現化した時系列段階的データセットを用いて学習したモジュールネットワーク(MN)を提案する。
これはKQI予測を、構成半導体製造をシミュレートするためのステージモジュールの組み合わせとして分解し、異なるウエハタイプと製造プロセス間の欠陥ウエハ検出を普遍的に強化する。
大規模な実験は、我々のアプローチの有用性を実証し、構成設計がより実用的な用途に解釈可能なインターフェースを提供する方法について光を当てた。
関連論文リスト
- Incomplete Multimodal Industrial Anomaly Detection via Cross-Modal Distillation [0.0]
3次元点雲とRGB画像に基づくマルチモーダル産業異常検出(IAD)は現在も進行中である。
既存の品質制御プロセスは、光学および赤外線イメージングのような高速なインライン検査と高解像度だが時間を要するニアラインキャラクタリゼーション技術を組み合わせている。
IADのためのクロスモーダル蒸留フレームワークであるCMDIADを提案する。
論文 参考訳(メタデータ) (2024-05-22T12:08:56Z) - An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything [7.188573079798082]
我々は、最先端のビジョントランスフォーマー(ViT)ベースのファンデーションモデルを用いて、画像セグメンテーションのためのフレームワークを構築する。
我々は、ラベル付きデータを使わずに高精度に学習し、迅速なチューニングプロセスを導出する。
我々は、現在のレーザー添加物製造プロセスに革命をもたらす可能性のある、リアルタイムな異常検出パイプラインの構築を構想する。
論文 参考訳(メタデータ) (2023-12-07T06:03:07Z) - Wafer Map Defect Patterns Semi-Supervised Classification Using Latent
Vector Representation [8.400553138721044]
集積回路製造段階における欠陥検出の需要はますます重要になりつつある。
従来のウェハマップ欠陥パターン検出法は、電子顕微鏡を用いた手動検査を含む。
手動操作の代わりに欠陥を自動的に検出できるモデルを提案する。
論文 参考訳(メタデータ) (2023-10-06T08:23:36Z) - Soft Sensing Regression Model: from Sensor to Wafer Metrology
Forecasting [2.8992789044888436]
本研究は,入射検査測定の予測にセンサデータを用いるソフトセンシング回帰の課題に焦点を当てた。
我々はLSTMベースの回帰器を提案し、モデルトレーニングのための2つの損失関数を設計した。
実験により, 複雑な製造工程における各種検査の精度と早期予測が得られた。
論文 参考訳(メタデータ) (2023-01-21T16:54:05Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
変形性容器内の液体をリアルタイムに推定するためのビジュオ触覚モデルを提案する。
我々は、RGBカメラからの生の視覚入力と、特定の触覚センサーからの触覚手がかりの2つの感覚モードを融合する。
ロボットシステムは、推定モデルに基づいて、リアルタイムで適切に制御され、調整される。
論文 参考訳(メタデータ) (2022-02-23T13:38:31Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
パターンタイプと強度を組み合わせた機械学習に基づく指標のための新しいフレームワークを提案する。
半導体産業のケーススタディでは,従来のプロセス制御を越え,高品質な実験結果を得る。
論文 参考訳(メタデータ) (2021-03-24T10:13:20Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
超低温原子からの実験データに教師なし機械学習技術を適用する。
我々は、完全にバイアスのない方法で、ハルダンモデルの位相位相図を得る。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2021-01-14T16:38:21Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
本論文では,現在FPD業界で主流となっている液晶ディスプレイ(LCD)の視覚検査システムについて述べる。
システムは、堅牢/高性能欠陥認識モデルと認知視覚検査サービスアーキテクチャの2つの基礎に基づいています。
論文 参考訳(メタデータ) (2021-01-11T08:14:35Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。