SELMA3D challenge: Self-supervised learning for 3D light-sheet microscopy image segmentation
- URL: http://arxiv.org/abs/2501.03880v2
- Date: Sun, 12 Jan 2025 15:18:28 GMT
- Title: SELMA3D challenge: Self-supervised learning for 3D light-sheet microscopy image segmentation
- Authors: Ying Chen, Rami Al-Maskari, Izabela Horvath, Mayar Ali, Luciano Hoher, Kaiyuan Yang, Zengming Lin, Zhiwei Zhai, Mengzhe Shen, Dejin Xun, Yi Wang, Tony Xu, Maged Goubran, Yunheng Wu, Kensaku Mori, Johannes C. Paetzold, Ali Erturk,
- Abstract summary: We organized the SELMA3D Challenge during the MICCAI 2024 conference. SELMA3D provides a vast collection of light-sheet images from cleared mice and human brains.
Five teams participated in all phases of the challenge, and their proposed methods are reviewed in this paper.
We will continue to support and extend SELMA3D as an inaugural MICCAI challenge focused on self-supervised learning for 3D microscopy image segmentation.
- Score: 6.473752329913864
- License:
- Abstract: Recent innovations in light sheet microscopy, paired with developments in tissue clearing techniques, enable the 3D imaging of large mammalian tissues with cellular resolution. Combined with the progress in large-scale data analysis, driven by deep learning, these innovations empower researchers to rapidly investigate the morphological and functional properties of diverse biological samples. Segmentation, a crucial preliminary step in the analysis process, can be automated using domain-specific deep learning models with expert-level performance. However, these models exhibit high sensitivity to domain shifts, leading to a significant drop in accuracy when applied to data outside their training distribution. To address this limitation, and inspired by the recent success of self-supervised learning in training generalizable models, we organized the SELMA3D Challenge during the MICCAI 2024 conference. SELMA3D provides a vast collection of light-sheet images from cleared mice and human brains, comprising 35 large 3D images-each with over 1000^3 voxels-and 315 annotated small patches for finetuning, preliminary testing and final testing. The dataset encompasses diverse biological structures, including vessel-like and spot-like structures. Five teams participated in all phases of the challenge, and their proposed methods are reviewed in this paper. Quantitative and qualitative results from most participating teams demonstrate that self-supervised learning on large datasets improves segmentation model performance and generalization. We will continue to support and extend SELMA3D as an inaugural MICCAI challenge focused on self-supervised learning for 3D microscopy image segmentation.
Related papers
- VPBSD:Vessel-Pattern-Based Semi-Supervised Distillation for Efficient 3D Microscopic Cerebrovascular Segmentation [13.825264703302224]
Vessel-Pattern-Based Semi-Supervised Distillation pipeline (VpbSD)
This pipeline initially constructs a vessel-pattern codebook that captures diverse vascular structures from unlabeled data.
In the knowledge distillation stage, the codebook facilitates the transfer of rich knowledge from a heterogeneous teacher model to a student model.
arXiv Detail & Related papers (2024-11-14T16:21:47Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation.
It is tested over a wide range of EM images, covering five segmentation tasks and 10 datasets.
arXiv Detail & Related papers (2024-08-26T08:59:22Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs)
Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases.
We develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time.
arXiv Detail & Related papers (2024-04-16T02:42:06Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - GPU-Accelerated RSF Level Set Evolution for Large-Scale Microvascular Segmentation [2.5003043942194236]
We propose a reformulation and implementation of the region-scalable fitting (RSF) level set model.
This makes it amenable to three-dimensional evaluation using both single-instruction multiple data (SIMD) and single-program multiple-data (SPMD) parallel processing.
We tested this 3D parallel RSF approach on multiple data sets acquired using state-of-the-art imaging techniques to acquire microvascular data.
arXiv Detail & Related papers (2024-04-03T15:37:02Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - A Knowledge Distillation framework for Multi-Organ Segmentation of
Medaka Fish in Tomographic Image [5.881800919492064]
We propose a self-training framework for multi-organ segmentation in tomographic images of Medaka fish.
We utilize the pseudo-labeled data from a pretrained model and adopt a Quality Teacher to refine the pseudo-labeled data.
The experimental results demonstrate that our method improves mean Intersection over Union (IoU) by 5.9% on the full dataset.
arXiv Detail & Related papers (2023-02-24T10:31:29Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
Estimating human pose and shape from monocular images is a long-standing problem in computer vision.
This survey focuses on the task of monocular 3D human mesh recovery.
arXiv Detail & Related papers (2022-03-03T18:56:08Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.