Superpixel Boundary Correction for Weakly-Supervised Semantic Segmentation on Histopathology Images
- URL: http://arxiv.org/abs/2501.03891v1
- Date: Tue, 07 Jan 2025 15:54:03 GMT
- Title: Superpixel Boundary Correction for Weakly-Supervised Semantic Segmentation on Histopathology Images
- Authors: Hongyi Wu, Hong Zhang,
- Abstract summary: Weakly supervised semantic segmentation (WSSS) reduces the annotation requirement by using image-level labels instead of pixel-level ones.
Class Activation Map (CAM)-based methods still suffer from low spatial resolution and unclear boundaries.
We propose a multi-level superpixel correction algorithm that refines CAM boundaries using superpixel clustering and floodfill.
- Score: 12.002538365135642
- License:
- Abstract: With the rapid advancement of deep learning, computational pathology has made significant progress in cancer diagnosis and subtyping. Tissue segmentation is a core challenge, essential for prognosis and treatment decisions. Weakly supervised semantic segmentation (WSSS) reduces the annotation requirement by using image-level labels instead of pixel-level ones. However, Class Activation Map (CAM)-based methods still suffer from low spatial resolution and unclear boundaries. To address these issues, we propose a multi-level superpixel correction algorithm that refines CAM boundaries using superpixel clustering and floodfill. Experimental results show that our method achieves great performance on breast cancer segmentation dataset with mIoU of 71.08%, significantly improving tumor microenvironment boundary delineation.
Related papers
- Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural Networks [31.87960207119459]
We propose an improved methodology that leverages the spatial context of tiles for more robust and smoother segmentation.
To address the irregular shapes of tiles, we utilize Graph Neural Networks (GNNs) to propagate context information across neighboring regions.
Our findings demonstrate that context-aware GNN algorithms can robustly find tumor demarcations on HSI images.
arXiv Detail & Related papers (2023-11-20T14:07:38Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Deep Superpixel Generation and Clustering for Weakly Supervised
Segmentation of Brain Tumors in MR Images [0.0]
This work proposes the use of a superpixel generation model and a superpixel clustering model to enable weakly supervised brain tumor segmentations.
We used 2D slices of magnetic resonance brain scans from the Multimodal Brain Tumor Challenge 2020 dataset and labels indicating the presence of tumors to train the pipeline.
Our method achieved a mean Dice coefficient of 0.691 and a mean 95% Hausdorff distance of 18.1, outperforming existing superpixel-based weakly supervised segmentation methods.
arXiv Detail & Related papers (2022-09-20T18:08:34Z) - Hybrid guiding: A multi-resolution refinement approach for semantic
segmentation of gigapixel histopathological images [0.7490318169877296]
We propose a cascaded convolutional neural network design, called H2G-Net, for semantic segmentation.
Design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder.
Best design achieved a Dice score of 0.933 on an independent test set of 90 WSIs.
arXiv Detail & Related papers (2021-12-07T02:31:29Z) - Pseudo-label refinement using superpixels for semi-supervised brain
tumour segmentation [0.6767885381740952]
Training neural networks using limited annotations is an important problem in the medical domain.
Semi-supervised learning aims to overcome this problem by learning segmentations with very little annotated data.
We propose a framework based on superpixels to improve the accuracy of the pseudo labels.
arXiv Detail & Related papers (2021-10-16T15:17:11Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis [17.936019428281586]
In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output.
We introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images.
We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset.
arXiv Detail & Related papers (2021-06-13T17:25:21Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
The lack of sharp boundaries in US images remains an inherent challenge for segmentation.
We propose a novel and effective framework to improve boundary estimation in US images.
Our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.
arXiv Detail & Related papers (2020-10-10T07:14:03Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.