論文の概要: VLM-driven Behavior Tree for Context-aware Task Planning
- arxiv url: http://arxiv.org/abs/2501.03968v2
- Date: Fri, 10 Jan 2025 10:38:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 12:07:37.480038
- Title: VLM-driven Behavior Tree for Context-aware Task Planning
- Title(参考訳): コンテキスト対応タスク計画のためのVLM駆動行動木
- Authors: Naoki Wake, Atsushi Kanehira, Jun Takamatsu, Kazuhiro Sasabuchi, Katsushi Ikeuchi,
- Abstract要約: 本稿では、視覚言語モデル(VLM)を利用して行動木(BT)を対話的に生成・編集する新しいフレームワークを提案する。
我々のアプローチの重要な特徴は、自己進行型視覚条件による条件制御にある。
われわれのフレームワークを実世界のカフェのシナリオで検証し、その実現可能性と限界を実証した。
- 参考スコア(独自算出の注目度): 8.07285448283823
- License:
- Abstract: The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
- Abstract(参考訳): 行動木(BT)の生成にLarge Language Models(LLMs)を用いることは、ロボティクスコミュニティで最近注目を集めているが、まだ開発の初期段階にある。
本稿では視覚条件に対処するBTを対話的に生成・編集するために視覚言語モデル(VLM)を活用する新しいフレームワークを提案する。
我々のアプローチの重要な特徴は、自己進行型視覚条件による条件制御にある。
具体的には、VLMは、条件を自由形式のテキストとして表現する視覚条件ノードを持つBTを生成する。
別のVLMプロセスは、ロボットの実行中にテキストをそのプロンプトに統合し、実世界の画像に対する条件を評価する。
われわれのフレームワークを実世界のカフェのシナリオで検証し、その実現可能性と限界を実証した。
関連論文リスト
- From Goal-Conditioned to Language-Conditioned Agents via Vision-Language Models [7.704773649029078]
視覚言語モデル(VLM)は、基底言語に非常に大きな可能性を秘めている。
本稿では,言語条件付きエージェント(LCA)構築問題の新しい分解法を提案する。
また,VLMを用いたLCAの高速化と品質向上についても検討した。
論文 参考訳(メタデータ) (2024-09-24T12:24:07Z) - Wonderful Team: Zero-Shot Physical Task Planning with Visual LLMs [0.0]
Wonderful Teamは、ゼロショットでハイレベルなロボット計画を実行するためのフレームワークである。
現実のセマンティクスと物理的計画タスクにおけるWonderful Teamのパフォーマンスは、しばしば別々のビジョンシステムに依存するメソッドを超えることが示される。
論文 参考訳(メタデータ) (2024-07-26T21:18:57Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
我々は,自由形式の言語命令で指定されたロボット操作タスクを解決するために,マーキングオープンワールドキーポイントアフォード(Moka)を導入する。
我々のアプローチの中心は、VLMの観測画像と物理世界におけるロボットの行動に関する予測を橋渡しする、コンパクトな点ベースの可測性表現である。
ツールの使用,変形可能な身体操作,オブジェクト再構成など,さまざまなテーブルトップ操作タスクにおけるMokaの性能評価と解析を行った。
論文 参考訳(メタデータ) (2024-03-05T18:08:45Z) - PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs [140.14239499047977]
視覚言語モデル(VLM)は、論理的推論から視覚的理解に至るまで、様々なタスクにわたって印象的な能力を示している。
PIVOT(Prompting with Iterative Visual Optimization)と呼ばれる新しい視覚的プロンプト手法を提案する。
私たちのアプローチは、ロボットのトレーニングデータやさまざまな環境でのナビゲーション、その他の能力なしに、ロボットシステムのゼロショット制御を可能にします。
論文 参考訳(メタデータ) (2024-02-12T18:33:47Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
本稿では,自然言語で表現されたハイレベルなタスクを実行可能なアクションのシーケンスに変換するための,MEIA(Multimodal Embodied Interactive Agent)を提案する。
MEMモジュールは、多様な要件とロボットの能力に基づいて、MEIAが実行可能なアクションプランを生成することを可能にする。
論文 参考訳(メタデータ) (2024-02-01T02:43:20Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - A Picture is Worth a Thousand Words: Language Models Plan from Pixels [53.85753597586226]
計画は, 実環境下で長時間の作業を行う人工エージェントの重要な機能である。
本研究では,事前学習型言語モデル(PLM)を用いて,具体的視覚環境におけるテキスト命令からのプランシーケンスを推論する。
論文 参考訳(メタデータ) (2023-03-16T02:02:18Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Sim-To-Real Transfer of Visual Grounding for Human-Aided Ambiguity
Resolution [0.0]
視覚的接地という課題について考察し, エージェントは, 混み合ったシーンからオブジェクトを抽出し, 自然言語で記述する。
視覚的接地に対する現代の全体論的アプローチは、言語構造を無視し、ジェネリックドメインをカバーするのに苦労する。
実体,属性,空間関係の合成視覚的グラウンド化のための,完全に分離されたモジュラー・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-24T14:12:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。